An Experimental Enquiry Concerning the Source of the Heat which is Excited by Friction

Last updated
Benjamin Thompson Benjamin Thompson.jpg
Benjamin Thompson

"An Experimental Enquiry Concerning the Source of the Heat which is Excited by Friction" is a scientific paper by Benjamin Thompson, Count Rumford, which was published in the Philosophical Transactions of the Royal Society in 1798. [1] The paper provided a substantial challenge to established theories of heat, and began the 19th century revolution in thermodynamics.

Contents

Background

Rumford was an opponent of the caloric theory of heat which held that heat is a fluid that could be neither created nor destroyed. He had further developed the view that all gases and liquids are absolute non-conductors of heat. His views were out of step with the accepted science of the time and the latter theory had particularly been attacked by John Dalton [2] and John Leslie. [3]

Rumford was heavily influenced by the argument from design [4] and it is likely that he wished to grant water a privileged and providential status in the regulation of human life. [5]

Though Rumford was to come to associate heat with motion, there is no evidence that he was committed to the kinetic theory or the principle of vis viva .

In his 1798 paper, Rumford acknowledged that he had predecessors in the notion that heat was a form of motion. [6] [lower-alpha 1] Those predecessors included Francis Bacon, [7] [lower-alpha 2] Robert Boyle, [8] [lower-alpha 3] Robert Hooke, [9] [lower-alpha 4] John Locke, [10] [lower-alpha 5] and Henry Cavendish. [11] [lower-alpha 6]

Experiments

Rumford had observed the frictional heat generated by boring out cannon barrels at the arsenal in Munich. At that time, cannons were cast at the foundry with an extra section of metal forward of what would become the muzzle, and this section was removed and discarded later in the manufacturing process. [12] [lower-alpha 7] Rumford took an unfinished cannon and modified this section to allow it to be enclosed by a watertight box while a blunted boring tool was used on it. He showed that water in this box could be boiled within roughly two and a half hours, and that the supply of frictional heat was seemingly inexhaustible. Rumford confirmed that no physical change had taken place in the material of the cannon by comparing the specific heats of the material machined away and that remaining were the same.

Rumford also argued that the seemingly indefinite generation of heat was incompatible with the caloric theory. He contended that the only thing communicated to the barrel was motion.

Rumford made no attempt to further quantify the heat generated or to measure the mechanical equivalent of heat.

Reception

Joule's apparatus for measuring the mechanical equivalent of heat. Joule's Apparatus (Harper's Scan).png
Joule's apparatus for measuring the mechanical equivalent of heat.

Most established scientists, such as William Henry, [13] as well as Thomas Thomson, believed that there was enough uncertainty in the caloric theory to allow its adaptation to account for the new results. It had certainly proved robust and adaptable up to that time. Furthermore, Thomson, [14] Jöns Jakob Berzelius, and Antoine César Becquerel observed that electricity could be indefinitely generated by friction. No educated scientist of the time was willing to hold that electricity was not a fluid.

Ultimately, Rumford's claim of the "inexhaustible" supply of heat was a reckless extrapolation from the study. Charles Haldat made some penetrating criticisms of the reproducibility of Rumford's results [15] and it is possible to see the whole experiment as somewhat tendentious. [16]

However, the experiment inspired the work of James Prescott Joule in the 1840s. Joule's more exact measurements were pivotal in establishing the kinetic theory at the expense of caloric.

Notes

  1. "Before I finish this paper, I would beg leave to observe, that although, in treating the subject I have endeavoured to investigate, I have made no mention of the names of those who have gone over the same ground before me, nor of the success of their labours; this omission has not been owing to any want of respect for my predecessors, but was merely to avoid prolixity, and to be more at liberty to pursue, without interruption, the natural train of my own ideas."
  2. In his Novum Organum, Francis Bacon concludes that heat is the motion of the particles composing matter. From p. 164 "Heat appears to be Motion." From p. 165: "The very essence of Heat, or the Substantial self of Heat, is motion and nothing else." From p. 168: "Heat is not a uniform Expansive Motion of the whole, but of the small particles of the body." [7]
  3. At the conclusion of Experiment VI, Boyle notes that if a nail is driven completely into a piece of wood, then further blows with the hammer cause it to become hot as the hammer's force is transformed into random motion of the nail's atoms. From pp. 61-62: "The impulse given by the stroke, being unable either to drive the nail further on, or destroy its interness [i.e., entireness, integrity], must be spent in making various vehement and intestine commotion of the parts among themselves, and in such an one we formerly observed the nature of heat to consist." [8]
  4. From p. 116: "Now Heat, as I shall afterward prove, is nothing but the internal Motion of the Particles of [a] Body; and the hotter a Body is, the more violently are the Particles moved."
  5. From p. 224: "Heat, is a very brisk agitation of the insensible parts of the object, which produces in us that sensation, from whence we denominate the object hot: so what in our sensation is heat, in the object is nothing but motion. This appears by the way, whereby heat is produc'd: for we see that the rubbing of a brass-nail upon a board, will make it very hot; and the axle-trees of carts and coaches are often hot, and sometimes to a degree, that it sets them on fire, by rubbing of the nave of the wheel upon it." [10]
  6. From the footnote continued on p. 313: "I think Sir Isaac Newton's opinion, that heat consists in the internal motion of the particles of bodies, much the most probable." [11]
  7. From the footnotes on p. 84 of Rumford's paper of 1798: "For fear I should be suspected of prodigality in the prosecution of my philosophical researches, I think it necessary to inform the Society, that the cannon I made use of in this experiment was not sacrificed to it. The short hollow cylinder which was formed at the end of it, was turned out of a cylindrical mass of metal, about 2 feet in length, projecting beyond the muzzle of the gun, called in the German language the verlorner kopf, (the head of the cannon to be thrown away) and which is represented in fig. 1." [12]

Related Research Articles

<span class="mw-page-title-main">History of physics</span> Historical development of physics

Physics is a branch of science whose primary objects of study are matter and energy. Discoveries of physics find applications throughout the natural sciences and in technology. Physics today may be divided loosely into classical physics and modern physics.

<span class="mw-page-title-main">Scientific Revolution</span> Emergence of modern science in the early modern period

The Scientific Revolution was a series of events that marked the emergence of modern science during the early modern period, when developments in mathematics, physics, astronomy, biology and chemistry transformed the views of society about nature. The Scientific Revolution took place in Europe in the second half of the Renaissance period, with the 1543 Nicolaus Copernicus publication De revolutionibus orbium coelestium often cited as its beginning.

<span class="mw-page-title-main">Thermodynamics</span> Physics of heat, work, and temperature

Thermodynamics is a branch of physics that deals with heat, work, and temperature, and their relation to energy, entropy, and the physical properties of matter and radiation. The behavior of these quantities is governed by the four laws of thermodynamics which convey a quantitative description using measurable macroscopic physical quantities, but may be explained in terms of microscopic constituents by statistical mechanics. Thermodynamics applies to a wide variety of topics in science and engineering, especially physical chemistry, biochemistry, chemical engineering and mechanical engineering, but also in other complex fields such as meteorology.

<span class="mw-page-title-main">Lord Kelvin</span> British physicist, engineer and mathematician (1824–1907)

William Thomson, 1st Baron Kelvin,, or Lord Kelvin, was British mathematician, mathematical physicist and engineer born in Belfast. He was the Professor of Natural Philosophy at the University of Glasgow for 53 years, where he undertook significant research and mathematical analysis of electricity, the formulation of the first and second laws of thermodynamics, and contributed significantly to unifying physics, which was then in its infancy of development as an emerging academic discipline. He received the Royal Society's Copley Medal in 1883, and served as its president from 1890 to 1895. In 1892, he became the first British scientist to be elevated to the House of Lords.

<span class="mw-page-title-main">Timeline of thermodynamics</span>

A timeline of events in the history of thermodynamics.

In physics and chemistry, the law of conservation of energy states that the total energy of an isolated system remains constant; it is said to be conserved over time. Energy can neither be created nor destroyed; rather, it can only be transformed or transferred from one form to another. For instance, chemical energy is converted to kinetic energy when a stick of dynamite explodes. If one adds up all forms of energy that were released in the explosion, such as the kinetic energy and potential energy of the pieces, as well as heat and sound, one will get the exact decrease of chemical energy in the combustion of the dynamite.

<span class="mw-page-title-main">James Prescott Joule</span> English physicist and brewer (1818–1889)

James Prescott Joule was an English physicist, mathematician and brewer, born in Salford, Lancashire. Joule studied the nature of heat, and discovered its relationship to mechanical work. This led to the law of conservation of energy, which in turn led to the development of the first law of thermodynamics. The SI derived unit of energy, the joule, is named after him.

<span class="mw-page-title-main">Henry Cavendish</span> English natural philosopher, and scientist (1731–1810)

Henry Cavendish was an English natural philosopher and scientist who was an important experimental and theoretical chemist and physicist. He is noted for his discovery of hydrogen, which he termed "inflammable air". He described the density of inflammable air, which formed water on combustion, in a 1766 paper, On Factitious Airs. Antoine Lavoisier later reproduced Cavendish's experiment and gave the element its name.

<span class="mw-page-title-main">Benjamin Thompson</span> American-born British physicist and inventor

Sir Benjamin Thompson, Count Rumford, FRS was a British physicist, born in Colonial Massachusetts, and inventor whose challenges to established physical theory were part of the 19th-century revolution in thermodynamics. He served as lieutenant-colonel of the King's American Dragoons, part of the British Loyalist forces, during the American Revolutionary War. After the end of the war he moved to London, where his administrative talents were recognized when he was appointed a full colonel, and in 1784 he received a knighthood from King George III. A prolific designer, Thompson also drew designs for warships. He later moved to Bavaria and entered government service there, being appointed Bavarian Army Minister and re-organizing the army, and, in 1792, was made a Count of the Holy Roman Empire.

The caloric theory is an obsolete scientific theory that heat consists of a self-repellent fluid called caloric that flows from hotter bodies to colder bodies. Caloric was also thought of as a weightless gas that could pass in and out of pores in solids and liquids. The "caloric theory" was superseded by the mid-19th century in favor of the mechanical theory of heat, but nevertheless persisted in some scientific literature—particularly in more popular treatments—until the end of the 19th century.

The heat death of the universe is a hypothesis on the ultimate fate of the universe, which suggests the universe will evolve to a state of no thermodynamic free energy, and will therefore be unable to sustain processes that increase entropy. Heat death does not imply any particular absolute temperature; it only requires that temperature differences or other processes may no longer be exploited to perform work. In the language of physics, this is when the universe reaches thermodynamic equilibrium. The Heat Death theory has become the leading theory of the end of the universe in the modern age with the fewest unpredictable factors.

Experimental physics is the category of disciplines and sub-disciplines in the field of physics that are concerned with the observation of physical phenomena and experiments. Methods vary from discipline to discipline, from simple experiments and observations, such as Galileo's experiments, to more complicated ones, such as the Large Hadron Collider.

Vis viva is a historical term used to describe a quantity similar to kinetic energy in an early formulation of the principle of conservation of energy.

In the history of science, the mechanical equivalent of heat states that motion and heat are mutually interchangeable and that in every case, a given amount of work would generate the same amount of heat, provided the work done is totally converted to heat energy. The mechanical equivalent of heat was a concept that had an important part in the development and acceptance of the conservation of energy and the establishment of the science of thermodynamics in the 19th century.

<span class="mw-page-title-main">History of thermodynamics</span> Aspect of history

The history of thermodynamics is a fundamental strand in the history of physics, the history of chemistry, and the history of science in general. Owing to the relevance of thermodynamics in much of science and technology, its history is finely woven with the developments of classical mechanics, quantum mechanics, magnetism, and chemical kinetics, to more distant applied fields such as meteorology, information theory, and biology (physiology), and to technological developments such as the steam engine, internal combustion engine, cryogenics and electricity generation. The development of thermodynamics both drove and was driven by atomic theory. It also, albeit in a subtle manner, motivated new directions in probability and statistics; see, for example, the timeline of thermodynamics.

<span class="mw-page-title-main">Work (thermodynamics)</span> Type of energy transfer

Thermodynamic work is one of the principal processes by which a thermodynamic system can interact with its surroundings and exchange energy. This exchange results in externally measurable macroscopic forces on the system's surroundings, which can cause mechanical work, to lift a weight, for example, or cause changes in electromagnetic, or gravitational variables. The surroundings also can perform work on a thermodynamic system, which is measured by an opposite sign convention.

<span class="mw-page-title-main">History of energy</span>

The word energy derives from Greek ἐνέργεια, which appears for the first time in the 4th century BCE works of Aristotle.

<span class="mw-page-title-main">Heat</span> Type of energy transfer

In thermodynamics, heat is the thermal energy transferred between systems due to a temperature difference. In colloquial use, heat sometimes refers to thermal energy itself.

<span class="mw-page-title-main">Theoretical physics</span> Branch of physics

Theoretical physics is a branch of physics that employs mathematical models and abstractions of physical objects and systems to rationalize, explain and predict natural phenomena. This is in contrast to experimental physics, which uses experimental tools to probe these phenomena.

References

Citations

Sources

  • Bacon, F. (1850) [1620]. Novum organum: Or true suggestions for the interpretation of nature. William Pickering.
  • Boyle, R. (1675). "Of the mechanical origin of heat and cold". Experiments, notes, &c., about the mechanical origine or production of divers particular qualities: Among which is inserted a discourse of the imperfection of the chymist's doctrine of qualities; together with some reflections upon the hypothesis of alcali and acidum. Printed by E. Flesher.
  • Cardwell, D.S.L. (1971). From Watt to Clausius: The rise of thermodynamics in the early industrial age. Heinemann.
  • Cavendish, H. (1783). "Observations on Mr. Hutchins's Experiments for Determining the Degree of Cold at Which Quicksilver Freezes". Philosophical Transactions of the Royal Society of London. 73: 303–328. Bibcode:1783RSPT...73..303C. doi:10.1098/rstl.1783.0021. JSTOR   106496. S2CID   186208906.
  • Haldat, C.N.A. (1810). "Inquiries concerning the heat produced by friction". Journal de Physique. lxv.
  • Henry, W. (1802). "A review of some experiments which have been supposed to disprove the materiality of heat". Manchester Memoirs (V): 603.
  • Hooke, R. (1705) [1681]. "Lectures of light". In Waller, R. (ed.). The posthumous works of Robert Hooke. Samuel Smith and Benjamin Walford.
  • Leslie, J. (1804). An Experimental Enquiry into the Nature and Propagation of Heat. London.
  • Locke, J. (1720) [1698-1704]. "Elements of natural philosophy". In Des Maizeaux, P. (ed.). A collection of several pieces of Mr. John Locke, never before printed, or not extant in his works. R. Francklin.
  • Thompson, B. (1798). "An inquiry concerning the source of the heat which is excited by friction". Philosophical Transactions of the Royal Society of London. 88: 80–102. doi: 10.1098/rstl.1798.0006 . S2CID   186208954.
  • Thompson, B. (1804). "An enquiry concerning the nature of heat and the mode of its communication". Philosophical Transactions of the Royal Society of London. 94: 77–182. doi: 10.1098/rstl.1804.0009 . S2CID   186211958.
  • Thomson, T. "Caloric". Encyclopædia Britannica, Supplement on chemistry (3rd ed.).

Bibliography