Anolis

Last updated

Contents

Anolis
Temporal range: Early Miocene–present
Anole.jpg
Green anole ( Anolis carolinensis )
Scientific classification OOjs UI icon edit-ltr.svg
Domain: Eukaryota
Kingdom: Animalia
Phylum: Chordata
Class: Reptilia
Order: Squamata
Suborder: Iguania
Family: Dactyloidae
Genus: Anolis
Daudin, 1802
Type species
Anolis punctatus
Daudin, 1802
Species

circa 425 spp., see text

Anolis is a genus of anoles ( US: /əˈn.liz/ ), iguanian lizards in the family Dactyloidae, native to the Americas. With more than 425 species, [1] it represents the world's most species-rich amniote tetrapod genus, although many of these have been proposed to be moved to other genera, in which case only about 45 Anolis species remain. [2] [3] Previously, it was classified under the family Polychrotidae that contained all the anoles, as well as Polychrus , but recent studies place it in the Dactyloidae. [2]

Taxonomy

This very large genus displays considerable paraphyly, but phylogenetic analysis suggests a number of subgroups or clades. [2] [4] Whether these clades are best recognized as subgenera within Anolis or separate genera remains a matter of dispute. [2] [3] [5]

If the clades are recognized as full genera, about 45 species remain in Anolis, with the remaining moved to Audantia (9 species), Chamaelinorops (7 species), Ctenonotus (more than 40 species), Dactyloa (circa 95 species), Deiroptyx (almost 35 species), Norops (about 190 species), and Xiphosurus (around 15 species). [2] [3] Some of these can be further subdivided. For example, Phenacosaurus was often listed as a full genus in the past, but it is a subclade within Dactyloa (Dactyloa heteroderma species group). [6] Among the subgroups within Anolis are:

In 2011, the green (or Carolina) anole (Anolis carolinensis) became the first reptile to have its complete genome published. [7]

Closely related, recently diverged anole lizards exhibited more divergence in thermal biology than in morphology. These anole lizards are thought to have the same structural niche and have similarities in their size and shape, but they inhabit different climatic niches with was variability in temperature and openness of the environment. This suggests that thermal physiology is more associated with recently diverged anole lizards. [8] [9]

Ecomorphs

Anolis lizards are some of the best examples of both adaptive radiation and convergent evolution. Populations of lizards on isolated islands diverge to occupy separate ecological niches, mostly in terms of the location within the vegetation where they forage (such as in the crown of trees vs. the trunk vs. underlying shrubs). [10] These divergences in habitat are accompanied by morphological changes primarily related to moving on the substrate diameter they most frequently encounter, with twig ecomorphs having short limbs, while trunk ecomorphs have long limbs.

In addition, these patterns repeat on numerous islands, with animals in similar habitats converging on similar body forms repeatedly. [10] [11] This demonstrates adaptive radiation can actually be predictable based on habitat encountered, and experimental introductions onto formerly lizard-free islands have proven Anolis evolution can be predicted. [12] [13] [14] [15]

After appearing on each of the four Greater Antillean Islands about 50 million years ago, Anolis lizards spread on each island to occupy niches in the island's trees. Some living in the tree canopy area, others low on the tree trunk near the ground; others in the mid-trunk area, others on twigs. Each new species developed its own distinct body type, called an ecomorph, adapted to the tree niche where it lived. Together, the different species occupied their various niches in the trees as a "community". A study of lizard fossils trapped in amber shows that the lizard communities have existed for about 20 million years or more. Four modern ecomorph body types, trunk-crown, trunk-ground, trunk, and twig, are represented in the amber fossils study. Close comparison of the lizard fossils with their descendants alive today in the Caribbean shows the lizards have changed little in the millions of years. [16] [17]

Behavior

As ectotherms, Anolis lizards must regulate their body temperature partly through behavioral changes and bask in the sunlight to gain enough heat to become fully active, but lizards cannot behaviorally warm themselves at night when temperatures drop. Because of this, cold tolerance evolves faster than heat tolerance in these lizards. [18] On the island of Hispaniola, both high-altitude and low-altitude lizard populations exist, and the thermal conditions at high and low elevations differ significantly. [19] High-altitude lizards have shifted their ecological niche to boulder environments, where warming themselves is easier, and they show changes in the shape of limbs and skull that make them better adapted to these environments.

To escape dangers, species that lives close to water has adapted the ability to stay submerged for up till 18 minutes. [20]

Species

The Anolis lizards that are less susceptible to predation are those with a dewlap in which both the scales and the exposed skin areas between them match the usual pale gray or whitish of the rest of the ventral surface. [21]

Dewlap

The dewlap is a flap of skin found beneath the jaw or throat of Anolis lizards. It can present in a variety of colorations, and is most present in male anoles. The dewlap is extended by means of the hyoid muscles in the throat, and can be flashed in a "pulse" pattern where the flap is extended repeatedly, or a "moving flag" pattern, where the lizard flashes it continuously while bobbing up and down. [22] The coloration of the dewlap is caused by two pigments, pterins and carotenoids. Pterin pigments are compounds synthesized from guanine, whereas carotenoids are pigments acquired from the diet. [23] Both cause the red-yellow hues most commonly found in Anolis lizard dewlaps. The function of the dewlap in Anolis lizards has been a topic of debate for centuries. It is thought that the dewlap is flashed as a visual signal for other competing males, or as a courtship signal for single females. It has also been hypothesized that the dewlap serves as a signal for sex recognition. [24]

Pink dewlap on an Anolis carolinensis lizard Anolis carolinensis 207880066.jpg
Pink dewlap on an Anolis carolinensis lizard

Initial studies

The first study done on dewlap function was by Mertens (1926). The initial assumption was that the dewlap was flashed as a method of sexual selection, and that the males would use it in order to attract females. It is hypothesized that female Anolis lizards are more attracted to males who flash their dewlaps more often, or have more brightly colored dewlaps. [24] This was then challenged by the hypothesis that males flashed their dewlap as a way to threaten other males in the area. [25] During intermale fights, dewlaps are flashed. More currently, many studies have been done on the dewlap as a function for species recognition, with focus on the relationship of the contrast between dewlap color and environment.

Relationship with environment

The dewlap comes in a variety of colors, including yellow, blue, and red. It was previously believed that the color of the dewlap is what mattered most in interlizard interactions, but it has since been found that there exists a relationship between habitat light conditions and dewlap color. [26] [22] This means that, rather than the color being of importance, it is the contrast of the dewlap against the background of its environment that best visually signals to other lizards. There have been many methods used to determine this. Persons et. al (1999) found that the probability of a dewlap showing being detected goes up with the contrast of dewlap against the background. They determined this by measuring the amount of times a "positive response" of the lizard's eyes turning towards a flashed dewlap occurred among different background contrasts. Similarly, Leal and Fleishman (2002) found that the light conditions in which a lizard displays its dewlap affects the probability of it being visually detected. They did this by measuring the UV spectral reflectance of dewlaps in Anolis cristatellus lizards using a spectroradiometer, then measuring the spectral sensitivity of the lizards’ retinal responses using electroretinographic (ERG) flicker photometry. [27]

Evolution

Anolis lizards have emerged to be a good example of adaptive radiation. The difference in dewlap morphology among Anolis lizard populations demonstrates this phenomenon. Anolis lizards have the ability to adapt to different areas of the environment in a way where multiple species can coexist effectively. The amount of vegetation in an environment affects the amount of light absorbed. Studies have shown that lighting affects the dewlap’s function as a visual signal. The diversity in vegetation in Anolis lizards’ environments has caused a similar diversity in dewlap morphology, as different species of anoles adapt to the lighting conditions in their environment. [27] The ability for a lizard to signal effectively also means it is able to defend its territory and attract mates more effectively, making it a good competitor.

The relationship between background contrast and visual signals also suggests that there exists a coevolution between the signals and sensory systems of Anolis lizards. [28] The environmental diversity of Anolis habitats causes a diversity in the recognition of individuals. Sensory systems must be able to effectively pick up on dewlap signals, thus coevolving with the changes in dewlap characteristics.

One of the main limitations to these theories is that of gene flow. Population genetic theory says that gene flow can counteract evolutionary adaptations made and prevent signal divergence, due to an influx of abnormal alleles into the new population. [29] This causes a genetic homogenization and challenges the idea that dewlap morphology in Anolis lizards and their sensory systems have coevolved.

Related Research Articles

<span class="mw-page-title-main">Adaptive radiation</span> A process in which organisms diversify rapidly from an ancestral species

In evolutionary biology, adaptive radiation is a process in which organisms diversify rapidly from an ancestral species into a multitude of new forms, particularly when a change in the environment makes new resources available, alters biotic interactions or opens new environmental niches. Starting with a single ancestor, this process results in the speciation and phenotypic adaptation of an array of species exhibiting different morphological and physiological traits. The prototypical example of adaptive radiation is finch speciation on the Galapagos, but examples are known from around the world.

<span class="mw-page-title-main">Dactyloidae</span> Family of reptiles

Dactyloidae are a family of lizards commonly known as anoles and native to warmer parts of the Americas, ranging from southeastern United States to Paraguay. Instead of treating it as a family, some authorities prefer to treat it as a subfamily, Dactyloinae, of the family Iguanidae. In the past they were included in the family Polychrotidae together with Polychrus, but the latter genus is not closely related to the true anoles.

<i>Anolis carolinensis</i> Species of reptile

Anolis carolinensis or green anole is a tree-dwelling species of anole lizard native to the southeastern United States and introduced to islands in the Pacific and Caribbean. A small to medium-sized lizard, the green anole is a trunk-crown ecomorph and can change its color to several shades from brown to green.

<span class="mw-page-title-main">Brown anole</span> Species of lizard

The brown anole, also known commonly as the Cuban brown anole, or De la Sagra's anole, is a species of lizard in the family Dactyloidae. The species is native to Cuba and the Bahamas. It has been widely introduced elsewhere, via the importation and exportation of plants where the anole would lay eggs in the soil of the pots, and is now found in Florida and other regions of the United States including southern Georgia, Texas, Louisiana, Tennessee, Mississippi, Alabama, Hawaii, and Southern California. It has also been introduced to other Caribbean islands, Mexico, and Taiwan.

<span class="mw-page-title-main">Knight anole</span> Species of lizard

The knight anole is the largest species of anole in the Dactyloidae family. Other common names include Cuban knight anole or Cuban giant anole, highlighting its native country, but it has also been introduced to Florida. In its native Cuba, this large anole is called chupacocote.

<i>Anolis pulchellus</i> Species of reptile

Anolis pulchellus, the Puerto Rican anole, Puerto Rican bush anole, snake anole, or sharp-mouthed lizard, is a small species of anole lizard in the family Dactyloidae. The species is among the most common lizards in Puerto Rico, and also native to Vieques, Culebra, and the Virgin Islands.

<i>Anolis cristatellus</i> Species of reptile

Anolis cristatellus is a small species of anole, belonging to the Dactyloidae family of reptiles. The species is native to Puerto Rico and the U.S. and British Virgin Islands, with introduced populations in locations around the Caribbean. The males of A. cristatellus are easily recognizable by the fin running down the top of the tail, which is known as a "caudal crest". The females also have this crest, but it is smaller than that of the males. The species is often quite common in many areas on Puerto Rico, where it can be seen during the day passing the time on the lower parts of tree trunks, or on fences and the walls of buildings in urban areas, sometimes venturing down onto the ground in order to lay eggs, have a snack, or do other cursorial activities. Like many anoles, this species displays the characteristic behaviour of doing push-ups as well as inflating a pizza-like flap of coloured skin on its throat, known as a dewlap, in order to show others how dominant it is, and thus attract mates or intimidate rivals.

<i>Anolis allisoni</i> Species of reptile

Anolis allisoni, also known commonly as Allison's anole or Cuban blue anole is a species of lizard in the family Dactyloidae. The species is endemic to Cuba, the Bay Islands and Cayos Cochinos off the mainland of Honduras, and Half Moon Caye off the mainland of Belize. There is also a single doubtful record from Cozumel, Mexico. Recently, the species has been documented in southern Florida. This diurnal species is commonly seen on palm trunks, and it feeds on invertebrates. It is among the relatively few anole species in which females may lay their eggs together, forming a communal nest.

<i>Anolis barbatus</i> Species of lizard

Anolis barbatus is a species of anole lizard from Western Cuba. Adults have a typical snout–vent length of about 18 cm (7 in), with tails that are slightly shorter than their bodies, and demonstrate little sexual dimorphism. It is one of six species called "false chameleons" that sometimes are recognized as their own genus Chamaeleolis or as the Cuban clade in Xiphosurus. These are all native to Cuba, fairly large for anoles, have robust heads, are dull gray-brown in color, slow-moving and have blunt teeth used for crushing snails, which is their main diet in the wild. Unusually among anoles, these all lack the ability to autotomize their tails. Together with the similar, but not closely related A. landestoyi of Hispaniola, they form a group known as the twig–giant ecomorph.

<i>Anolis bartschi</i> Species of lizard

Anolis bartschi, also known commonly as the Pinar Del Rio cliff anole, western cliff anole, and the west Cuban anole, is a species of lizard in the family Dactyloidae. The species is endemic to Cuba.

<i>Anolis grahami</i> Species of lizard

Anolis grahami, commonly known as the Jamaican turquoise anole and Graham's anole, is a species of lizard in the family Dactyloidae. The species is native to the island of Jamaica, and has also been introduced to the territory of Bermuda. It is one of many different species of anole lizards found in Jamaica. There are two recognized subspecies.

<i>Anolis carolinensis</i> anole series Clade of lizards

The Anolis carolinensis series is a proposed clade or subgroup of closely related mid-sized trunk crown anoles within the genus Anolis. It was created by Nicholson et al. in 2012 and defined as containing 13 species, a few examples are listed below.

<i>Anolis</i> ecomorphs Grouping of species of lizard

The ecomorph concept is a term first coined by Ernest Edward Williams in 1972 which he defined as a “species with the same structural habitat/niche, similar in morphology and behavior, but not necessarily close phyletically.” Williams first applied this definition to the Greater Antillean anoles upon observing their evolutionary radiation, although it has since been used widely elsewhere.

<i>Anolis proboscis</i> Species of lizard

Anolis proboscis, commonly known as the horned anole, Ecuadorian horned anole or Pinocchio lizard, is a small anole lizard in the family Dactyloidae. A single male specimen was discovered in 1953 in Ecuador and formally described by Peters and Orces in 1956, but the species then went unreported until its rediscovery in 2004. Its currently known habitat is a small stretch of vegetation along an Ecuadorian highway. It has been classified as Endangered by the IUCN due to its restricted distribution and ongoing habitat loss.

<i>Anolis lineatus</i> Species of lizard

Anolis lineatus, the Curaçao striped anole or striped anole, is a species of lizard in the family Dactyloidae. It is native to Curaçao and Aruba of the Netherlands Antilles, but has also been introduced to Klein Curaçao. It is generally common, and is particularly common in densely vegetated gardens in the capital Willemstad. It is found in dry tropical shrubland at all elevations in its range, but is uncommon in habitats without larger trees. It can often be seen on rocks, the walls of buildings or tree trunks; at various heights but often relatively close to the ground. It is a member of the A. chrysolepis species group.

<i>Anolis vermiculatus</i> Species of lizard

Anolis vermiculatus, the Vinales anole or Cuban stream anole, is a species of lizard in the family Dactyloidae, endemic to Cuba.

<i>Anolis aquaticus</i> Species of reptile

Anolis aquaticus, commonly known as the water anole, is a semi-aquatic species of anole, a lizard in the family Dactyloidae, native to southwestern Costa Rica and far southwestern Panama. The species demonstrates adaptations that allows it to spend periods of time underwater up to approximately a quarter of an hour, forming an air bubble which clings to its head and serves to recycle the animal's air supply while it spends time beneath the surface. Although highly unusual, similar adaptions and behavior are found in other species of semi-aquatic anoles.

<i>Anolis auratus</i> Species of lizard

Anolis auratus, the grass anole, is a species of lizard in the family Dactyloidae. The species is found in Costa Rica, Panama, Venezuela, Colombia, French Guiana, Guyana, and Brazil.

<i>Anolis evermanni</i> Species of lizard

Anolis evermanni, also known commonly as the emerald anole, Evermann's anole, and the small green anole, is a species of lizard included within the family Dactyloidae. A. evermanni is native to Puerto Rico, where it is mainly found in wet forests. A. evermanni is a medium-sized lizard and bright emerald-green in color. A. evermanni is studied for its behavior as well as the evolution of the family Dactyloidae. The group of lizards which are member species of the family Dactyloidae are known as anoles. Anoles are found throughout the Americas and are related to iguanas.

<i>Anolis gundlachi</i> Species of lizard

Anolis gundlachi, also commonly known as the yellow-chinned anole, Gundlach's anole, and the yellow-beard anole, is an oviparous, sexually dimorphic species of lizard in the family Dactyloidae. The species is endemic to Puerto Rico and lives in mountainous forests at high elevations. The diet of A. gundlachi consists mostly of insects. This species is also known for signaling other lizards through a modulated head bob display, with varying bobbing amplitudes and patterns based on an individual's distance from other lizards.

References

  1. Uetz, P.; Hallermann, J. (2018). "Dactyloidae". The Reptile Database . Retrieved 5 November 2018.
  2. 1 2 3 4 5 Nicholson, Kirsten E.; Crother, Brian I.; Guyer, Craig; Savage, Jay M. (2012). "It is time for a new classification of anoles (Squamata: Dactyloidae)" (PDF). Zootaxa. 3477 (1): 1–108, page 38. doi: 10.11646/zootaxa.3477.1.1 . Archived (PDF) from the original on 30 January 2016. Abstract
  3. 1 2 3 Nicholson, K.A.; B.I. Crother; C. Guyer; J.M. Savage (2018). "Translating a clade based classification into one that is valid under the international code of zoological nomenclature: the case of the lizards of the family Dactyloidae (Order Squamata)". Zootaxa. 4461 (4): 573–586. doi:10.11646/zootaxa.4461.4.7. PMID   30314068. S2CID   52975031.
  4. Glor, Richard E.; Jonathan, B. Losos; Larson, Allan (2005). "Out of Cuba: overwater dispersal and speciation among lizards in the Anolis carolinensis subgroup" (PDF). Molecular Ecology. 14 (8): 2419–2432. Bibcode:2005MolEc..14.2419G. doi:10.1111/j.1365-294X.2005.02550.x. PMID   15969724. S2CID   20092906.
  5. Poe; Nieto-Montes de Oca; Torres-Carvajal; Queiroz; Velasco; Truett; Gray; Ryan; Köhler; Ayala-Varela; Latella (2017). "A Phylogenetic, Biogeographic, and Taxonomic study of all Extant Species of Anolis (Squamata; Iguanidae)". Systematic Biology. 66 (5): 663–697. doi: 10.1093/sysbio/syx029 . PMID   28334227.
  6. Nicholson 2012 , p. 17
  7. Sweetlove, Lee (2011-08-31). "Lizard genome unveiled". Nature. doi:10.1038/news.2011.512.
  8. Losos, J. B. (2009). Lizards in an evolutionary tree: ecology and adaptive radiation of anoles. University of California Press, Berkeley, CA.
  9. Hertz, P.E.; Arima, Y.; Harrison, A.; Huey, R.B.; Losos, J.B.; Glor, R.E. (2012). "Asynchronous evolution of physiology and morphology in Anolis lizards". Org. Evol. 67 (7): 2101–2113. doi: 10.1111/evo.12072 . PMID   23815663. S2CID   2793493.
  10. 1 2 Losos, J.B. (2007). "Detective work in the West Indies: integrating historical and experimental approaches to study island lizard evolution" (PDF). BioScience. 57 (7): 585–597. doi: 10.1641/b570712 . S2CID   6869606.
  11. Losos, J. B.; Jackman, T. R.; Larson, A.; de Queiroz, K.; Rodriguez-Schettino, L. (1998). "Contingency and determinism in replicated adaptive radiations of island lizards". Science. 279 (5359): 2115–2118. Bibcode:1998Sci...279.2115L. doi:10.1126/science.279.5359.2115. PMID   9516114.
  12. Calsbeek, R (2008). "Experimental evidence that competition and habitat use shape the individual fitness surface". Journal of Evolutionary Biology. 22 (1): 97–108. doi:10.1111/j.1420-9101.2008.01625.x. PMID   19120813. S2CID   25745447.
  13. Calsbeek, R.; Buermann, W.; Smith, T.B. (2009). "Parallel shifts in ecology and natural selection in an island lizard". BMC Evolutionary Biology. 9 (1): 3. Bibcode:2009BMCEE...9....3C. doi: 10.1186/1471-2148-9-3 . PMC   2630972 . PMID   19126226.
  14. Calsbeek, R.; Cox, R.M. (2010). "Experimentally assessing the relative importance of predation and competition as agents of selection". Nature. 465 (7298): 613–616. Bibcode:2010Natur.465..613C. doi:10.1038/nature09020. PMID   20453837. S2CID   4326027.
  15. Calsbeek, R.; Smith, T.B. (2007). "Probing the adaptive landscape using experimental islands: density-dependent natural selection on lizard body size". Evolution. 61 (5): 1052–1061. doi: 10.1111/j.1558-5646.2007.00093.x . PMID   17492960. S2CID   4643163.
  16. "Trapped in Amber: Ancient fossils reveal remarkable stability of Caribbean lizard communities". 27 July 2015. Retrieved 2015-07-28.
  17. Sherratt, Emma; Castañeda, María del Rosario; Garwood, Russell J.; Mahler, D. Luke; Sanger, Thomas J.; Herrel, Anthony; Queiroz, Kevin de; Losos, Jonathan B. (2015-07-27). "Amber fossils demonstrate deep-time stability of Caribbean lizard communities". Proceedings of the National Academy of Sciences. 112 (32): 9961–9966. Bibcode:2015PNAS..112.9961S. doi: 10.1073/pnas.1506516112 . ISSN   0027-8424. PMC   4538666 . PMID   26216976.
  18. Muñoz, Martha M.; Stimola, Maureen A.; Algar, Adam C.; Conover, Asa; Rodriguez, Anthony J.; Landestoy, Miguel A.; Bakken, George S.; Losos, Jonathan B. (2014-03-07). "Evolutionary stasis and lability in thermal physiology in a group of tropical lizards". Proceedings of the Royal Society B: Biological Sciences. 281 (1778): 20132433. doi:10.1098/rspb.2013.2433. ISSN   0962-8452. PMC   3906933 . PMID   24430845.
  19. Muñoz, Martha M.; Losos, Jonathan B. (January 2018). "Thermoregulatory Behavior Simultaneously Promotes and Forestalls Evolution in a Tropical Lizard". The American Naturalist. 191 (1): E15–E26. doi:10.1086/694779. ISSN   0003-0147. PMID   29244559. S2CID   3918571.
  20. Evolutionary biologists discover mechanism that enables lizards to breathe underwater
  21. Fitch, H.S.; Hillis, D.M. (1984). "The anolis dewlap: Interspecific variability and morphological associations with habitat". Copeia. 1984 (2): 315–323. doi:10.2307/1445187. JSTOR   1445187.
  22. 1 2 Persons, M. H.; Fleishman, L. J.; Frye, M. A.; Stimphil, M. E. (1999-07-05). "Sensory response patterns and the evolution of visual signal design in anoline lizards". Journal of Comparative Physiology A: Sensory, Neural, and Behavioral Physiology. 184 (6). Springer Science and Business Media LLC: 585–607. doi:10.1007/s003590050358. ISSN   0340-7594. S2CID   21160410.
  23. Steffen, John E.; McGraw, Kevin J. (2007). "Contributions of pterin and carotenoid pigments to dewlap coloration in two anole species". Comparative Biochemistry and Physiology Part B: Biochemistry and Molecular Biology. 146 (1). Elsevier BV: 42–46. doi:10.1016/j.cbpb.2006.08.017. ISSN   1096-4959. PMID   17056290.
  24. 1 2 Sigmund, William R. (1983). "Female Preference for Anolis carolinensis Males as a Function of Dewlap Color and Background Coloration". Journal of Herpetology. 17 (2). JSTOR: 137–143. doi:10.2307/1563454. ISSN   0022-1511. JSTOR   1563454.
  25. NOBLE, G. K.; BRADLEY, H. T. (1933). "The Mating Behavior of Lizards; ITS Bearing on the Theory of Sexual Selection". Annals of the New York Academy of Sciences. 35 (1). Wiley: 25–100. Bibcode:1933NYASA..35...25N. doi:10.1111/j.1749-6632.1933.tb55365.x. ISSN   0077-8923. S2CID   85270929.
  26. Fleishman, Leo J.; Perez-Martinez, Christian A.; Leal, Manuel (2022-08-01). "Can Sensory Drive Explain the Evolution of Visual Signal Diversity in Terrestrial Species? A Test with Anolis Lizards". The American Naturalist. 200 (2). University of Chicago Press: 236–249. doi: 10.1086/720267 . ISSN   0003-0147. PMID   35905402. S2CID   247884850.
  27. 1 2 Leal, Manuel; Fleishman, Leo J. (2002-02-22). "Evidence for habitat partitioning based on adaptation to environmental light in a pair of sympatric lizard species". Proceedings of the Royal Society of London. Series B: Biological Sciences. 269 (1489). The Royal Society: 351–359. doi:10.1098/rspb.2001.1904. ISSN   0962-8452. PMC   1690909 . PMID   11886622.
  28. Leal, Manuel; Fleishman, Leo J. (2004). "Differences in Visual Signal Design and Detectability between Allopatric Populations ofAnolisLizards". The American Naturalist. 163 (1). University of Chicago Press: 26–39. doi:10.1086/379794. ISSN   0003-0147. PMID   14767834. S2CID   5650723.
  29. Dieckmann, Ulf; Doebeli, Michael (1999). "On the origin of species by sympatric speciation" (PDF). Nature. 400 (6742). Springer Science and Business Media LLC: 354–357. Bibcode:1999Natur.400..354D. doi:10.1038/22521. ISSN   0028-0836. PMID   10432112. S2CID   4301325.

Further reading