Ant on a rubber rope

Last updated

The ant on a rubber rope is a mathematical puzzle with a solution that appears counterintuitive or paradoxical. It is sometimes given as a worm, or inchworm, on a rubber or elastic band, but the principles of the puzzle remain the same.

Contents

The details of the puzzle can vary, [1] [2] but a typical form is as follows:

An ant starts to crawl along a taut rubber rope 1 km long at a speed of 1 cm per second (relative to the rubber it is crawling on). At the same time, the rope starts to stretch uniformly at a constant rate of 1 km per second, so that after 1 second it is 2 km long, after 2 seconds it is 3 km long, etc. Will the ant ever reach the end of the rope?

At first consideration it seems that the ant will never reach the end of the rope, but whatever the length of the rope and the speeds, provided that the length and speeds remain steady, the ant will always be able to reach the end given sufficient time in the form stated above, it would take 8.9×1043421 years. There are two key principles: first, since the rubber rope is stretching both in front of and behind the ant, the proportion of the rope the ant has already walked is conserved, and, second, the proportional speed of the ant is inversely proportional to the length of the rubber rope, so the distance the ant can travel is unbounded like the harmonic series.

Ant on a rubber rope animation.gif
An ant (red dot) crawling on a stretchable rope at a constant speed of 1 cm/s. The rope is initially 4 cm long and stretches at a constant rate of 2 cm/s.

A formal statement of the problem

For sake of analysis, the following is a formalized version of the puzzle.

Consider an ideal elastic rope on the -axis such that at time its endpoints are at (the starting point) and (the target point) for constants and . This is to say that at the target point is at the position and that as varies the target point moves at constant velocity . A point object (the ant) is on the rope, and at it begins at the starting point, moving along the rope at constant velocity relative to the rope at its current position. Is there a time at which the ant meets the target point?

The statement of the puzzle from the introduction corresponds to when is 1 km, is 1 km/s, and is 1 cm/s.

Solutions to the problem

A discrete mathematics solution

Although solving the problem appears to require analytical techniques, it can actually be answered by a combinatorial argument by considering a variation in which the rope stretches suddenly and instantaneously each second rather than stretching continuously. Indeed, the problem is sometimes stated in these terms, and the following argument is a generalisation of one set out by Martin Gardner, originally in Scientific American and later reprinted. [1]

Consider a variation in which the rope stretches suddenly and instantaneously before each second, so that the target-point moves from to at time , and from to at time , etc. Many versions of the problem have the rope stretch at the end of each second, but by having the rope stretch before each second we have disadvantaged the ant in its goal, so we can be sure that if the ant can reach the target point in this variation then it certainly can in the original problem, or indeed in variants where the rope stretches at the end of each second.

Let be the proportion of the distance from the starting-point to the target point which the ant has covered at time t. So . In the first second the ant travels distance , which is of the distance from the starting-point to the target-point (which is throughout the first second). When the rope stretches suddenly and instantaneously, remains unchanged, because the ant moves along with the rubber where it is at that moment. So . In the next second the ant travels distance again, which is of the distance from the starting-point to the target-point (which is throughout that second). So . Similarly, for any , .

Notice that for any , , so we can write

.

The term is a partial harmonic series, which diverges, so we can find such that , which means that .

Therefore, given sufficient time, the ant will complete the journey to the target point. This solution could be used to obtain an upper bound for the time required, but does not give an exact answer for the time it will take.

An analytical solution

Absolute position x vs time t graph of the animation above: an ant crawls at 1 cm/s (red) relative to and along an elastic rope initially 4 cm long, stretching at 2 cm/s, painted in eights (shaded background). The asymptote (dashed purple) shows the position of the ant if the rope were not stretching. As the ant's position has an exponential component, it eventually catches up with the end of the rope (green) regardless of the ratio of their initial speeds. The boundaries between the background stripes can be visualised as trajectories that the ant would take should it suddenly stop when its reaches the stripe. However, since the ant is crawling, it traverses the stripes until it reaches the final one at the end. Ant on rubber rope graph.svg
Absolute position x vs time t graph of the animation above: an ant crawls at 1cm/s (red) relative to and along an elastic rope initially 4cm long, stretching at 2cm/s, painted in eights (shaded background). The asymptote (dashed purple) shows the position of the ant if the rope were not stretching. As the ant's position has an exponential component, it eventually catches up with the end of the rope (green) regardless of the ratio of their initial speeds. The boundaries between the background stripes can be visualised as trajectories that the ant would take should it suddenly stop when its reaches the stripe. However, since the ant is crawling, it traverses the stripes until it reaches the final one at the end.

A key observation is that the speed of the ant at a given time is its speed relative to the rope, i.e. , plus the speed of the rope at the point where the ant is. The target-point moves with speed , so at time it is at . Other points along the rope move with proportional speed, so at time the point on the rope at is moving with speed . So if we write the position of the ant at time as , and the speed of the ant at time as , we can write:

This is a first order linear differential equation, and it can be solved with standard methods. However, to do so requires some moderately advanced calculus. A much simpler approach considers the ant's position as a proportion of the distance from the starting-point to the target-point. [2]

Consider coordinates measured along the rope with the starting-point at and the target-point at . In these coordinates, all points on the rope remain at a fixed position (in terms of ) as the rope stretches. At time , a point at is at , and a speed of relative to the rope in terms of , is equivalent to a speed in terms of . So if we write the position of the ant in terms of at time as , and the speed of the ant in terms of at time as , we can write:

where is a constant of integration.

Now, which gives , so .

If the ant reaches the target-point (which is at ) at time , we must have which gives us:

and hence for the length of the rubber band when the ant catches the target point (i.e. the distance travelled by the ant):

(For the simple case of v = 0, we can consider the limit and obtain the simple solution .) As this gives a finite value for all finite , , (, ), this means that, given sufficient time, the ant will complete the journey to the target-point. This formula can be used to find out how much time is required.

For the problem as originally stated, , and , which gives . This is a vast timespan, even compared to the estimated age of the universe, which is only about 4×1017 s. Furthermore, the length of the rope after such a time is similarly huge, 2.8×1043429km, so it is only in a mathematical sense that the ant can ever reach the end of this particular rope.

Intuition

Consider the situation from the introduction, which is a rope 1 km long being stretched 1 km/s, along which an ant walking is with a relative speed of 1 cm/s. At any moment, we can imagine putting down two marks on the rope: one at the ant's current position, and another 1 mm closer to the target point. If the ant were to stop for a moment, from its point of view the first mark is stationary, and the second mark is moving away at a constant speed of 1 mm/s or less (depending on the starting time). It is clear that the ant will be able reach this second mark for a simple over-estimation of the time it takes, imagine that we "turn off" the force that the rope applies to the ant at the exact moment it reaches the first mark (leaving the ant to continue onward at constant velocity). With respect to the reference frame for the first mark at this moment, the ant is moving at 1 cm/s and the second mark is initially 1 mm away and moving at 1 mm/s, and the ant would still reach the mark in 1/9 s.

What we need to do is think about the ant's position as a fraction of the length of the rope. The above reasoning shows that this fraction is always increasing, but this is not yet enough. (The ant might asymptotically approach some fraction of the rope and never come close to reaching the target point.) What the reasoning also shows is that every 1/9 s, the fraction of the rope that the ant walks along is (at least as large as a number that is) inversely proportional to the current time, since the target point is moving proportionally to time, and the fraction of the rope this 1 mm interval corresponds to is inversely proportional to that.

Quantities that grow at a rate that is inversely proportional to time exhibit logarithmic growth, which grows without bound, however slowly that might be. This means the ant will, eventually, reach the target point.

If the speed at which the rope stretches increases through time, then the ant might not reach the target. For example, imagine one end of the rope is attached to a weight that is in free fall in a uniform gravitational field, with the rope applying no force to the weight (in other words, the target point's position is given by a function of the form ). If is 1 m, is 9.81 m/s2, and the ant moves at 1 cm/s, then the ant won't cover even 0.71% of the length of the rope, despite the fact the ant is always making forward progress. However, if the ant moves at a speed greater than 1.41 m/s it will reach the end of the rope in finite time. Further there are scenarios where the speed of the ant is decreasing exponentially while the length of the rope is increasing exponentially and the ant will also reach the end of the rope in finite time. [3]

See also

Related Research Articles

<span class="mw-page-title-main">Beta distribution</span> Probability distribution

In probability theory and statistics, the beta distribution is a family of continuous probability distributions defined on the interval [0, 1] or in terms of two positive parameters, denoted by alpha (α) and beta (β), that appear as exponents of the variable and its complement to 1, respectively, and control the shape of the distribution.

<span class="mw-page-title-main">Gamma distribution</span> Probability distribution

In probability theory and statistics, the gamma distribution is a two-parameter family of continuous probability distributions. The exponential distribution, Erlang distribution, and chi-squared distribution are special cases of the gamma distribution. There are two equivalent parameterizations in common use:

  1. With a shape parameter and a scale parameter .
  2. With a shape parameter and an inverse scale parameter , called a rate parameter.
<span class="mw-page-title-main">Beta function</span> Mathematical function

In mathematics, the beta function, also called the Euler integral of the first kind, is a special function that is closely related to the gamma function and to binomial coefficients. It is defined by the integral

In information geometry, the Fisher information metric is a particular Riemannian metric which can be defined on a smooth statistical manifold, i.e., a smooth manifold whose points are probability measures defined on a common probability space. It can be used to calculate the informational difference between measurements.

<span class="mw-page-title-main">Bloch sphere</span> Geometrical representation of the pure state space of a two-level quantum mechanical system

In quantum mechanics and computing, the Bloch sphere is a geometrical representation of the pure state space of a two-level quantum mechanical system (qubit), named after the physicist Felix Bloch.

<span class="mw-page-title-main">Pedal curve</span> Curve generated by the projections of a fixed point on the tangents of another curve

In mathematics, a pedal curve of a given curve results from the orthogonal projection of a fixed point on the tangent lines of this curve. More precisely, for a plane curve C and a given fixed pedal pointP, the pedal curve of C is the locus of points X so that the line PX is perpendicular to a tangent T to the curve passing through the point X. Conversely, at any point R on the curve C, let T be the tangent line at that point R; then there is a unique point X on the tangent T which forms with the pedal point P a line perpendicular to the tangent T – the pedal curve is the set of such points X, called the foot of the perpendicular to the tangent T from the fixed point P, as the variable point R ranges over the curve C.

In differential topology, the jet bundle is a certain construction that makes a new smooth fiber bundle out of a given smooth fiber bundle. It makes it possible to write differential equations on sections of a fiber bundle in an invariant form. Jets may also be seen as the coordinate free versions of Taylor expansions.

<span class="mw-page-title-main">Tangent half-angle formula</span> Relates the tangent of half of an angle to trigonometric functions of the entire angle

In trigonometry, tangent half-angle formulas relate the tangent of half of an angle to trigonometric functions of the entire angle. The tangent of half an angle is the stereographic projection of the circle through the point at angle onto the line through the angles . Among these formulas are the following:

<span class="mw-page-title-main">Inverse-gamma distribution</span> Two-parameter family of continuous probability distributions

In probability theory and statistics, the inverse gamma distribution is a two-parameter family of continuous probability distributions on the positive real line, which is the distribution of the reciprocal of a variable distributed according to the gamma distribution.

In calculus, the Leibniz integral rule for differentiation under the integral sign states that for an integral of the form

<span class="mw-page-title-main">Strophoid</span> Geometric curve constructed from another curve and two points

In geometry, a strophoid is a curve generated from a given curve C and points A and O as follows: Let L be a variable line passing through O and intersecting C at K. Now let P1 and P2 be the two points on L whose distance from K is the same as the distance from A to K. The locus of such points P1 and P2 is then the strophoid of C with respect to the pole O and fixed point A. Note that AP1 and AP2 are at right angles in this construction.

In probability theory, the Chinese restaurant process is a discrete-time stochastic process, analogous to seating customers at tables in a restaurant. Imagine a restaurant with an infinite number of circular tables, each with infinite capacity. Customer 1 sits at the first table. The next customer either sits at the same table as customer 1, or the next table. This continues, with each customer choosing to either sit at an occupied table with a probability proportional to the number of customers already there, or an unoccupied table. At time n, the n customers have been partitioned among m ≤ n tables. The results of this process are exchangeable, meaning the order in which the customers sit does not affect the probability of the final distribution. This property greatly simplifies a number of problems in population genetics, linguistic analysis, and image recognition.

Sinusoidal plane-wave solutions are particular solutions to the electromagnetic wave equation.

Photon polarization is the quantum mechanical description of the classical polarized sinusoidal plane electromagnetic wave. An individual photon can be described as having right or left circular polarization, or a superposition of the two. Equivalently, a photon can be described as having horizontal or vertical linear polarization, or a superposition of the two.

In geometry, various formalisms exist to express a rotation in three dimensions as a mathematical transformation. In physics, this concept is applied to classical mechanics where rotational kinematics is the science of quantitative description of a purely rotational motion. The orientation of an object at a given instant is described with the same tools, as it is defined as an imaginary rotation from a reference placement in space, rather than an actually observed rotation from a previous placement in space.

There are several equivalent ways for defining trigonometric functions, and the proof of the trigonometric identities between them depend on the chosen definition. The oldest and somehow the most elementary definition is based on the geometry of right triangles. The proofs given in this article use this definition, and thus apply to non-negative angles not greater than a right angle. For greater and negative angles, see Trigonometric functions.

<span class="mw-page-title-main">Gravitational lensing formalism</span>

In general relativity, a point mass deflects a light ray with impact parameter by an angle approximately equal to

<span class="mw-page-title-main">Sectrix of Maclaurin</span> Curve traced by the crossing of two lines revolving about poles

In geometry, a sectrix of Maclaurin is defined as the curve swept out by the point of intersection of two lines which are each revolving at constant rates about different points called poles. Equivalently, a sectrix of Maclaurin can be defined as a curve whose equation in biangular coordinates is linear. The name is derived from the trisectrix of Maclaurin, which is a prominent member of the family, and their sectrix property, which means they can be used to divide an angle into a given number of equal parts. There are special cases known as arachnida or araneidans because of their spider-like shape, and Plateau curves after Joseph Plateau who studied them.

In fluid dynamics, Taylor scraping flow is a type of two-dimensional corner flow occurring when one of the wall is sliding over the other with constant velocity, named after G. I. Taylor.

In the larger context of the Navier-Stokes equations, elementary flows are a collection of basic flows from which it is possible to construct more complex flows with different techniques. In this article the term flows is used interchangeably to the term solutions due to historical reasons.

References

  1. 1 2 Gardner, Martin (1982). aha! Gotcha: paradoxes to puzzle and delight. W. H. Freeman and Company. pp.  145–146. ISBN   0-7167-1361-6.
  2. 1 2 Graeme (1 October 2002). "The long walk". The Problem Site. Archived from the original on 24 April 2008. Retrieved 6 April 2008.
  3. McCartney, Mark (2013). Extending the rubber rope: convergent series, divergent series and the integrating factor, Int. J. Math. Ed. in Sci. & Tech., 44:4, 554-559. https://www.tandfonline.com/doi/abs/10.1080/0020739X.2012.729615