Antimony electrode

Last updated

The antimony electrode has been investigated for its ability to function as a pH electrode. [1] The electrode is made of elemental antimony. The electrochemical process can be formulated as

Sb2O3(s) + 6 H+ + 6 e 2Sb(s) + 3H2O

The oxide, Sb2O3, is present on the surface of the electrode. Although this electrode does not give measurements of high accuracy, its rapid response, simplicity and rugged construction make it useful for continuous industrial pH monitoring. It can be used at elevated temperatures. In an unusual application, an antimony electrode was used to measure pH inside the human stomach. The simplicity of construction meant that the electrode could be made small enough to be swallowed. Thin copper wires were attached to the electrode and one terminal on a pH meter. The subject's foot was placed in a saline solution. A calomel reference electrode was also placed in this solution and was connected to the other terminal on the meter. [1] Antimony electrodes continue to be used for in vivo measurements. [2] The use of antimony-based electrodes for analytical determinations has been reviewed. [3]

Antimony electrodes are available commercially. They can be employed with solutions containing hydrofluoric acid for which the glass electrode cannot be used because of the reaction of glass with solutions containing hydrogen fluoride.

Related Research Articles

<span class="mw-page-title-main">Antimony</span> Chemical element, symbol Sb and atomic number 51

Antimony is a chemical element with the symbol Sb (from Latin stibium) and atomic number 51. A lustrous gray metalloid, it is found in nature mainly as the sulfide mineral stibnite (Sb2S3). Antimony compounds have been known since ancient times and were powdered for use as medicine and cosmetics, often known by the Arabic name kohl. The earliest known description of the metal in the West was written in 1540 by Vannoccio Biringuccio.

pH Measure of the level of acidity or basicity of an aqueous solution

In chemistry, pH, also referred to as acidity, historically denotes "potential of hydrogen". It is a scale used to specify the acidity or basicity of an aqueous solution. Acidic solutions are measured to have lower pH values than basic or alkaline solutions.

<span class="mw-page-title-main">Titration</span> Laboratory method for determining the concentration of an analyte

Titration is a common laboratory method of quantitative chemical analysis to determine the concentration of an identified analyte. A reagent, termed the titrant or titrator, is prepared as a standard solution of known concentration and volume. The titrant reacts with a solution of analyte to determine the analyte's concentration. The volume of titrant that reacted with the analyte is termed the titration volume.

pH meter Instrument that indicates acidity or alkalinity in water-based solutions, expressed as pH

A pH meter is a scientific instrument that measures the hydrogen-ion activity in water-based solutions, indicating its acidity or alkalinity expressed as pH. The pH meter measures the difference in electrical potential between a pH electrode and a reference electrode, and so the pH meter is sometimes referred to as a "potentiometric pH meter". The difference in electrical potential relates to the acidity or pH of the solution. Testing of pH via pH meters (pH-metry) is used in many applications ranging from laboratory experimentation to quality control.

<span class="mw-page-title-main">Biochemical oxygen demand</span> Oxygen needed to remove organics from water

Biochemical oxygen demand is an analytical parameter representing the amount of dissolved oxygen (DO) consumed by aerobic bacteria growing on the organic material present in a water sample at a specific temperature over a specific time period. The BOD value is most commonly expressed in milligrams of oxygen consumed per liter of sample during 5 days of incubation at 20 °C and is often used as a surrogate of the degree of organic water pollution.

<span class="mw-page-title-main">Karl Fischer titration</span> Classic titration method in analytical chemistry

Karl Fischer titration is a classic titration method in chemical analysis that uses coulometric or volumetric titration to determine trace amounts of water in a sample. It was invented in 1935 by the German chemist Karl Fischer. Today, the titration is done with an automated Karl Fischer titrator.

An ion-selective electrode (ISE), also known as a specific ion electrode (SIE), is a transducer that converts the change in the concentration of a specific ion dissolved in a solution into an electrical potential. The voltage is theoretically dependent on the logarithm of the ionic activity, according to the Nernst equation. Ion-selective electrodes are used in analytical chemistry and biochemical/biophysical research, where measurements of ionic concentration in an aqueous solution are required.

In chemistry, a reactivity series (or activity series) is an empirical, calculated, and structurally analytical progression of a series of metals, arranged by their "reactivity" from highest to lowest. It is used to summarize information about the reactions of metals with acids and water, single displacement reactions and the extraction of metals from their ores.

Coulometry determines the amount of matter transformed during an electrolysis reaction by measuring the amount of electricity consumed or produced. It can be used for precision measurements of charge, and the amperes even used to have a coulometric definition. However, today coulometry is mainly used for analytical applications. Coulometry is a group of techniques in analytical chemistry. It is named after Charles-Augustin de Coulomb.

<span class="mw-page-title-main">Reference electrode</span> Electrode with a stable and accurate electrode potential

A reference electrode is an electrode that has a stable and well-known electrode potential. The overall chemical reaction taking place in a cell is made up of two independent half-reactions, which describe chemical changes at the two electrodes. To focus on the reaction at the working electrode, the reference electrode is standardized with constant concentrations of each participant of the redox reaction.

A glass electrode is a type of ion-selective electrode made of a doped glass membrane that is sensitive to a specific ion. The most common application of ion-selective glass electrodes is for the measurement of pH. The pH electrode is an example of a glass electrode that is sensitive to hydrogen ions. Glass electrodes play an important part in the instrumentation for chemical analysis and physicochemical studies. The voltage of the glass electrode, relative to some reference value, is sensitive to changes in the activity of a certain type of ions.

<span class="mw-page-title-main">ISFET</span> Type of field-effect transistor

An ion-sensitive field-effect transistor (ISFET) is a field-effect transistor used for measuring ion concentrations in solution; when the ion concentration (such as H+, see pH scale) changes, the current through the transistor will change accordingly. Here, the solution is used as the gate electrode. A voltage between substrate and oxide surfaces arises due to an ion sheath. It is a special type of MOSFET (metal–oxide–semiconductor field-effect transistor), and shares the same basic structure, but with the metal gate replaced by an ion-sensitive membrane, electrolyte solution and reference electrode. Invented in 1970, the ISFET was the first biosensor FET (BioFET).

<span class="mw-page-title-main">Fluoroantimonic acid</span> Chemical compound

Fluoroantimonic acid is a mixture of hydrogen fluoride and antimony penta­fluoride, containing various cations and anions. This mixture is a superacid that, in some sense, is over a billion times stronger than 100% sulfuric acid in terms of its protonating ability measured by Hammett function. It even protonates some hydro­carbons to afford pentacoordinate carbo­cations. Fluoro­antimonic acid is corrosive. Like its precursor hydrogen fluoride, it attacks glass, but can be stored in containers lined with PTFE (Teflon) or PFA.

<span class="mw-page-title-main">Antimony trichloride</span> Chemical compound

Antimony trichloride is the chemical compound with the formula SbCl3. It is a soft colorless solid with a pungent odor and was known to alchemists as butter of antimony.

<span class="mw-page-title-main">Scanning ion-conductance microscopy</span>

Scanning ion-conductance microscopy (SICM) is a scanning probe microscopy technique that uses an electrode as the probe tip. SICM allows for the determination of the surface topography of micrometer and even nanometer-range structures in aqueous media conducting electrolytes. The samples can be hard or soft, are generally non-conducting, and the non-destructive nature of the measurement allows for the observation of living tissues and cells, and biological samples in general.

<span class="mw-page-title-main">Quinhydrone electrode</span>

The quinhydrone electrode may be used to measure the hydrogen ion concentration (pH) of a solution containing an acidic substance.

Electroanalytical methods are a class of techniques in analytical chemistry which study an analyte by measuring the potential (volts) and/or current (amperes) in an electrochemical cell containing the analyte. These methods can be broken down into several categories depending on which aspects of the cell are controlled and which are measured. The four main categories are potentiometry, amperometry, coulometry, and voltammetry.

Equilibrium constants are determined in order to quantify chemical equilibria. When an equilibrium constant K is expressed as a concentration quotient,

Acid strength is the tendency of an acid, symbolised by the chemical formula , to dissociate into a proton, , and an anion, . The dissociation of a strong acid in solution is effectively complete, except in its most concentrated solutions.

<span class="mw-page-title-main">Glass bead road surface marking</span>

Glass beads composed of soda lime glass are essential for providing retroreflectivity in many kinds of road surface markings. Retroreflectivity occurs when incident light from vehicles is refracted within glass beads that are imbedded in road surface markings and then reflected back into the driver's field of view. In North America, approximately 227 million kilograms of glass beads are used for road surface markings annually. Roughly 520 kilograms of glass beads are used per mile during remarking of a five lane highway system, and road remarking can occur every two to five years. In the United States, the massive demand for glass beads has led to importing from countries using outdated manufacturing regulations and techniques. These techniques include the use of heavy metals such as arsenic, antimony, and lead during the manufacturing process as decolorizes and fining agents. It has been found that the heavy metals become incorporated into the bead's glass matrix and may leach under environmental conditions that roads experience.

References

  1. 1 2 Bates, Roger G. Determination of pH: theory and practice. Wiley, 1973, pp 300-304
  2. Opekun, Antone R.; Smith, J. Lacey; Graham, David Y. (1990). "Mucosal Potential Differences and Buffer Composition". Digestive Diseases and Sciences. 35 (8): 950–955.
  3. Núria Serrano, José; Manuel Díaz-Cruz, Cristina; Ariño Miquel, Esteban (2016). "Antimony- based electrodes for analytical determinations". Trends in Analytical Chemistry. 77: 203–213. doi:10.1016/j.trac.2016.01.011. hdl: 2445/140557 .