Apical dominance

Last updated
Many conifers show particularly strong apical dominance, strongest of all being in the family Araucariaceae, showing a single erect central trunk with strongly differentiated horizontal branching. Cuttings of Araucariaceae species taken from a side branch will not develop erect growth. Araucaria heterophylla, New Zealand. Araucaria heterophylla in New Zealand.jpg
Many conifers show particularly strong apical dominance, strongest of all being in the family Araucariaceae, showing a single erect central trunk with strongly differentiated horizontal branching. Cuttings of Araucariaceae species taken from a side branch will not develop erect growth. Araucaria heterophylla , New Zealand.

In botany, apical dominance is the phenomenon whereby the main, central stem of the plant is dominant over (i.e., grows more strongly than) other side stems; on a branch the main stem of the branch is further dominant over its own side twigs.

Contents

Plant physiology describes apical dominance as the control exerted by the terminal bud (and shoot apex) over the outgrowth of lateral buds. [1]

Overview

Apical dominance occurs when the shoot apex inhibits the growth of lateral buds so that the plant may grow vertically. It is important for the plant to devote energy to growing upward so that it can get more light to undergo photosynthesis. If the plant utilizes available energy for growing upward, it may be able to outcompete other individuals in the vicinity. Plants that were capable of outcompeting neighboring plants likely had higher fitness. Apical dominance is therefore most likely adaptive.

Typically, the end of a shoot contains an apical bud, which is the location where shoot growth occurs. The apical bud produces a plant hormone, auxin, (IAA) that inhibits growth of the lateral buds further down on the stem towards the axillary bud. Auxin is predominantly produced in the growing shoot apex and is transported throughout the plant via the phloem and diffuses into lateral buds which prevents elongation. [2] That auxin likely regulates apical dominance was first discovered in 1934. [3]

When the apical bud is removed, the lowered IAA concentration allows the lateral buds to grow and produce new shoots, which compete to become the lead growth.

Weeping larch showing growth habit lacking apical dominance. Weeping larch.jpg
Weeping larch showing growth habit lacking apical dominance.

Apex removal

Plant physiologists have identified four different stages the plant goes through after the apex is removed (Stages I-IV). The four stages are referred to as

  1. lateral bud formation,
  2. "imposition of inhibition" (apical dominance),
  3. initiation of lateral bud outgrowth following decapitation, and
  4. elongation and development of the lateral bud into a branch.

These stages can also be defined by the hormones that are regulating the process which are as follows: Stage I, cytokinin promoted, causing the lateral bud to form since cytokinin plays a role in cell division; Stage II, auxin is promoted, resulting in apical dominance ("imposition of inhibition"); Stage III, cytokinin released resulting in outward growth of the lateral bud; and Stage IV, auxin is decreased and gibberellic acid is promoted which results in cell division, enabling the bud or branch to continue outward growth. [1]

More simply stated, lateral bud formation is inhibited by the shoot apical meristem (SAM). The lateral bud primordium (from which the lateral bud develops) is located below SAM. The shoot tip rising from the SAM inhibits the growth of the lateral bud by repressing auxin. When the shoot is cut off, the lateral bud begins to lengthen which is mediated by a release of cytokinin. Once the apical dominance has been lifted from the plant, elongation and lateral growth is promoted and the lateral buds grow into new branches. When lateral bud formation prevents the plant from growing upward, it is undergoing lateral dominance. Often, lateral dominance can be triggered by decapitating the SAM or artificially decreasing the concentration of auxin in plant tissues.

Applications

When apical meristems (apical buds) are continually removed, the shape of a tree or shrub can be manipulated remarkably, because newer, uninhibited, branches grow en masse almost anywhere on the tree or shrub.
Topiary garden, Beckley Park manor, UK Beckley Park topiary garden.jpg
When apical meristems (apical buds) are continually removed, the shape of a tree or shrub can be manipulated remarkably, because newer, uninhibited, branches grow en masse almost anywhere on the tree or shrub.
Topiary garden, Beckley Park manor, UK

When the apical bud is removed, the lowered IAA concentration allows the lateral buds to grow and produce new shoots, which compete to become the lead growth. Pruning techniques such as coppicing and pollarding make use of this natural response to curtail direct plant growth and produce a desired shape, size, and/or productivity level for the plant. The principle of apical dominance is manipulated for espalier creation, hedge building, or artistic sculptures called topiary. If the SAM is removed, it stimulates growth in the lateral direction. By careful pruning, it is possible to create remarkable designs or patterns.

Some fruit trees have strong apical dominance, and young trees can become "leggy", with poor side limb development. Apical dominance can be reduced in this case, or in cases where limbs are broken off by accident, by cutting off the auxin flow above side buds that one wishes to stimulate. This is often done by orchardists for young trees.

Occasionally, strong apical dominance is advantageous, as in the "Ballerina" apple trees. These trees are intended to be grown in small gardens, and their strong apical dominance combined with a dwarfing rootstock gives a compact narrow tree with very short fruiting side branches.

See also

Related Research Articles

Root Part of a plant

In vascular plants, the roots are the organs of a plant that are modified to provide anchorage for the plant and take in water and nutrients into the plant body, which allows plants to grow taller and faster. They are most often below the surface of the soil, but roots can also be aerial or aerating, that is, growing up above the ground or especially above water.

Fruit tree pruning

Fruit tree pruning is the cutting and removing of selected parts of a fruit tree. It spans a number of horticultural techniques. Pruning often means cutting branches back, sometimes removing smaller limbs entirely. It may also mean removal of young shoots, buds, and leaves.

Vascular cambium Main growth tissue in the stems, roots of plants

The vascular cambium is the main growth tissue in the stems and roots of many plants, specifically in dicots such as buttercups and oak trees, gymnosperms such as pine trees, as well as in certain other vascular plants. It produces secondary xylem inwards, towards the pith, and secondary phloem outwards, towards the bark.

Meristem Type of plant tissue involved in cell proliferation

The meristem is a type of tissue found in plants. It consists of undifferentiated cells capable of cell division. Cells in the meristem can develop into all the other tissues and organs that occur in plants. These cells continue to divide until a time when they get differentiated and then lose the ability to divide.

Plant hormone Chemical compounds that regulate plant growth and development

Plant hormones are signal molecules, produced within plants, that occur in extremely low concentrations. Plant hormones control all aspects of plant growth and development, from embryogenesis, the regulation of organ size, pathogen defense, stress tolerance and through to reproductive development. Unlike in animals each plant cell is capable of producing hormones. Went and Thimann coined the term "phytohormone" and used it in the title of their 1937 book.

Auxin plant hormone

Auxins are a class of plant hormones with some morphogen-like characteristics. Auxins play a cardinal role in coordination of many growth and behavioral processes in plant life cycles and are essential for plant body development. The Dutch biologist Frits Warmolt Went first described auxins and their role in plant growth in the 1920s. Kenneth V. Thimann (1904-1997) became the first to isolate one of these phytohormones and to determine its chemical structure as indole-3-acetic acid (IAA). Went and Thimann co-authored a book on plant hormones, Phytohormones, in 1937.

Cytokinin

Cytokinins (CK) are a class of plant hormones that promote cell division, or cytokinesis, in plant roots and shoots. They are involved primarily in cell growth and differentiation, but also affect apical dominance, axillary bud growth, and leaf senescence. Folke Skoog discovered their effects using coconut milk in the 1940s at the University of Wisconsin–Madison.

Stolon

In biology, stolons, also known as runners, are horizontal connections between organisms. They may be part of the organism, or of its skeleton; typically, animal stolons are external skeletons.

Gravitropism

Gravitropism is a coordinated process of differential growth by a plant in response to gravity pulling on it. It also occurs in fungi. Gravity can be either "artificial gravity" or natural gravity. It is a general feature of all higher and many lower plants as well as other organisms. Charles Darwin was one of the first to scientifically document that roots show positive gravitropism and stems show negative gravitropism. That is, roots grow in the direction of gravitational pull and stems grow in the opposite direction. This behavior can be easily demonstrated with any potted plant. When laid onto its side, the growing parts of the stem begin to display negative gravitropism, growing upwards. Herbaceous (non-woody) stems are capable of a degree of actual bending, but most of the redirected movement occurs as a consequence of root or stem growth outside. The mechanism is based on the Cholodny–Went model which was proposed in 1927, and has since been modified. Although the model has been criticized and continues to be refined, it has largely stood the test of time.

Plant senescence

Plant senescence is the process of aging in plants. Plants have both stress-induced and age-related developmental aging. Chlorophyll degradation during leaf senescence reveals the carotenoids, such as anthocyanin and xanthophylls and is the cause of autumn leaf color in deciduous trees. Leaf senescence has the important function of recycling nutrients, mostly nitrogen, to growing and storage organs of the plant. Unlike animals, plants continually form new organs and older organs undergo a highly regulated senescence program to maximize nutrient export.

Axillary bud Embryonic shoot located in the axil of a leaf or branch

The axillary bud is an embryonic or organogenic shoot located in the axil of a leaf. Each bud has the potential to form shoots, and may be specialized in producing either vegetative shoots or reproductive shoots (flowers). Once formed, a bud may remain dormant for some time, or it may form a shoot immediately.

Primordium organ in the earliest recognizable stage of embryonic development

A primordium in embryology, is an organ or tissue in its earliest recognizable stage of development. Cells of the primordium are called primordial cells. A primordium is the simplest set of cells capable of triggering growth of the would-be organ and the initial foundation from which an organ is able to grow. In flowering plants, a floral primordium gives rise to a flower.

Lateral root

Lateral roots, emerging from the pericycle, extend horizontally from the primary root (radicle) and over time makeup the iconic branching pattern of root systems. They contribute to anchoring the plant securely into the soil, increasing water uptake, and facilitates the extraction of nutrients required for the growth and development of the plant. Lateral roots increase the surface area of a plant's root system and can be found in great abundance in several plant species. In some cases, lateral roots have been found to form symbiotic relationships with rhizobia (bacteria) and mycorrhizae (fungi) found in the soil, to further increase surface area and increase nutrient uptake.

Etiolation Developmental pathway followed in flowering plants in absence of visible light

Etiolation is a process in flowering plants grown in partial or complete absence of light. It is characterized by long, weak stems; smaller leaves due to longer internodes; and a pale yellow color (chlorosis). The development of seedlings in the dark is known as "skotomorphogenesis" and leads to etiolated seedlings.

Polar auxin transport is the regulated transport of the plant hormone auxin in plants. It is an active process, the hormone is transported in cell-to-cell manner and one of the main features of the transport is its asymmetry and directionality (polarity). The polar auxin transport functions to coordinate plant development; the following spatial auxin distribution underpins most of plant growth responses to its environment and plant growth and developmental changes in general. In other words, the flow and relative concentrations of auxin informs each plant cell where it is located and therefore what it should do or become.

Important structures in plant development are buds, shoots, roots, leaves, and flowers; plants produce these tissues and structures throughout their life from meristems located at the tips of organs, or between mature tissues. Thus, a living plant always has embryonic tissues. By contrast, an animal embryo will very early produce all of the body parts that it will ever have in its life. When the animal is born, it has all its body parts and from that point will only grow larger and more mature. However, both plants and animals pass through a phylotypic stage that evolved independently and that causes a developmental constraint limiting morphological diversification.

Lateral shoot

A lateral shoot, commonly known as a branch, is a part of a plant's shoot system that develops from axillary buds on the stem's surface, extending laterally from the plant's stem.

Epicormic shoot

An epicormic shoot is a shoot growing from an epicormic bud, which lies underneath the bark of a trunk, stem, or branch of a plant.

Cholodny–Went model Botany model

In botany, the Cholodny–Went model, proposed in 1927, is an early model describing tropism in emerging shoots of monocotyledons, including the tendencies for the shoot to grow towards the light (phototropism) and the roots to grow downward (gravitropism). In both cases the directional growth is considered to be due to asymmetrical distribution of auxin, a plant growth hormone. Although the model has been criticized and continues to be refined, it has largely stood the test of time.

Topophysis occurs when scions, buddings, or root cuttings continue to grow in the same way after grafting as they had while growing on the ortet.

References

  1. 1 2 Cline, M (1994). "The role of hormones in apical dominance. New approaches to an old problem in plant development". Physiologia Plantarum. 90: 230–237. doi:10.1111/j.1399-3054.1994.tb02216.x.
  2. Booker, Jonathon; Steven Chatfield; Ottoline Leyser (February 2003). "Auxin acts in xylem-associated or Medullary cells to mediate apical dominance". Plant Cell. 15 (2): 495–507. doi:10.1105/tpc.007542. PMC   141216 . PMID   12566587.
  3. Thimann, K.V.; F. Skoog (1934). "On the inhibition of bud development and other functions of growth substance in Vicia faba". Proceedings of the Royal Society B . 114 (789): 317–339. Bibcode:1934RSPSB.114..317T. doi: 10.1098/rspb.1934.0010 .