Aquadag

Last updated

Aquadag is a trade name for a water-based colloidal graphite coating commonly used in cathode ray tubes (CRTs). It is manufactured by Acheson Industries, a subsidiary of ICI. The name is a shortened form of "Aqueous Deflocculated Acheson Graphite", [1] but has become a generic term for conductive graphite coatings used in vacuum tubes. Other related products include Oildag, Electrodag and Molydag. Deflocculation refers to the distribution of powdered high purity graphite in an aqueous solution containing approximately 2% to 10% by weight of various Tannic/Gallotannic acid variants and separating the colloidal graphite suspension from the remaining unsuspended graphite particulates. The product names are often printed with DAG in upper case (e.g. AquaDAG). It is used as an electrically conductive coating on insulating surfaces, and as a lubricant.

Contents

Properties

Aquadag consists of a dispersion of colloidal graphite in distilled water. [2] [3] It is provided in concentrated paste form and is usually diluted with distilled water to a desired consistency before application. It can be applied by brushing, swabbing, spraying, or dipping, after which the surface is dried, leaving a layer of pure graphite.

After drying the coating is electrically conductive. Its resistance and other electrical properties vary with degree of dilution and application method. When diluted 1:1 and applied by brush its resistance is:

Air-dried ~800 ohms per square
Heated to 200 °C ~500 ohms per square
Heated to 300 °C ~20–30 ohms per square

Use in cathode ray tubes

A conductive aquadag coating applied to the inside of the glass envelope of cathode ray tubes, serves as a high-voltage electrode. The coating covers the inside walls of the "bell" of the CRT tube, from just inside the neck, and stops just short of the screen. Due to the graphite, it is electrically conductive and forms part of the high-voltage positive electrode, the second anode, which accelerates the electron beam. [4] [5] The second anode is a metal cylinder inside the neck of the tube, connected to a high positive voltage of 18 to 25 kilovolts. It has spring clips, which press against the walls of the tube, making contact with the aquadag coating so it also carries this high positive voltage. The electron beam from the electron gun in the neck of the tube is accelerated by the high voltage on the anode and passes through it to strike the screen.

The aquadag coating has two functions: it maintains a uniform electric field inside the tube near the screen, so the electron beam remains collimated and is not distorted by external fields, and it collects the electrons after they have hit the screen, serving as the return path for the cathode current. [6] When the electron beam hits the screen, in addition to causing the fluorescent phosphor coating to give off light, it also knocks other electrons out of the surface. These secondary electrons are attracted to the high positive voltage of the coating and return through it to the anode power supply. Without the coating a negative space charge would develop near the screen, deflecting the electron beam. A typical value of beam current collected by the anode coating is 0.6 mA. [5]

In some CRTs the aquadag coating performs a third function, as a filter capacitor for the high-voltage anode supply. [4] A second conductive coating is applied to part of the outside of the tube facing the inside coating. This outside coating is connected to the ground side of the anode supply, thus the full anode voltage is applied between the coatings. The sandwich of the two coatings separated by the dielectric glass wall of the tube form a final capacitor to filter out ripple from the anode supply. Although the capacitance is small, around 500 pF, [4] due to the low anode current it is sufficient to act as a filter capacitor.

In the television tube manufacturing industry, the manufacturing step that applies the aquadag is called "dagging".

Other uses

Aside from its use in the production of CRTs, Aquadag is used in many types of high-voltage lab apparatus where a conductive coating is needed on an insulating surface. The surfaces of some metals (most notably aluminum) can develop nonconductive oxide layers, which tend to disrupt the electrostatic field produced around the surface of the metal when used as an electrode. Aquadag is not subject to such effects and provides a completely uniform equipotential surface for electrostatics.

Producers of continuous filament fiberglass will coat their product with Agadag when a conductive property is required.

Aquadag was also used in the production of some copper oxide rectifiers, to help make the ohmic connections to their counterelectrodes. [7]

Other dags

There are also deflocculated graphite products dispersed in liquids other than water. Acheson has extended the use of the dag brandname to non-graphite products e.g. the copper-based Electrodag 437 conductive paint.

Related Research Articles

Anode Electrode through which conventional current flows into a polarized electrical device

An anode is an electrode through which the conventional current enters into a polarized electrical device. This contrasts with a cathode, an electrode through which conventional current leaves an electrical device. A common mnemonic is ACID, for "anode current into device". The direction of conventional current in a circuit is opposite to the direction of electron flow, so electrons flow out the anode of a galvanic cell, into an outside or external circuit connected to the cell. In both a galvanic cell and an electrolytic cell, the anode is the electrode at which the oxidation reaction occurs.

Cathode-ray tube Vacuum tube that displays images used in old TVs and monitors

A cathode-ray tube (CRT) is a vacuum tube containing one or more electron guns, the beams of which are manipulated to display images on a phosphorescent screen. The images may represent electrical waveforms (oscilloscope), pictures, radar targets, or other phenomena. A CRT on a television set is commonly called a picture tube. CRTs have also been used as memory devices, in which case the screen is not intended to be visible to an observer.

Cathode ray Stream of electrons observed in vacuum tubes

Cathode rays are streams of electrons observed in discharge tubes. If an evacuated glass tube is equipped with two electrodes and a voltage is applied, glass behind the positive electrode is observed to glow, due to electrons emitted from the cathode. They were first observed in 1869 by German physicist Julius Plücker and Johann Wilhelm Hittorf, and were named in 1876 by Eugen Goldstein Kathodenstrahlen, or cathode rays. In 1897, British physicist J. J. Thomson showed that cathode rays were composed of a previously unknown negatively charged particle, which was later named the electron. Cathode-ray tubes (CRTs) use a focused beam of electrons deflected by electric or magnetic fields to render an image on a screen.

A cathode is the electrode from which a conventional current leaves a polarized electrical device. This definition can be recalled by using the mnemonic CCD for Cathode Current Departs. A conventional current describes the direction in which positive charges move. Electrons have a negative electrical charge, so the movement of electrons is opposite to that of the conventional current flow. Consequently, the mnemonic cathode current departs also means that electrons flow into the device's cathode from the external circuit.

Electrode

An electrode is an electrical conductor used to make contact with a nonmetallic part of a circuit. The word was coined by William Whewell at the request of the scientist Michael Faraday from two Greek words: elektron, meaning amber, and hodos, a way.

Triode

A triode is an electronic amplifying vacuum tube consisting of three electrodes inside an evacuated glass envelope: a heated filament or cathode, a grid, and a plate (anode). Developed from Lee De Forest's 1906 Audion, a partial vacuum tube that added a grid electrode to the thermionic diode, the triode was the first practical electronic amplifier and the ancestor of other types of vacuum tubes such as the tetrode and pentode. Its invention founded the electronics age, making possible amplified radio technology and long-distance telephony. Triodes were widely used in consumer electronics devices such as radios and televisions until the 1970s, when transistors replaced them. Today, their main remaining use is in high-power RF amplifiers in radio transmitters and industrial RF heating devices. In recent years there has been a resurgence in demand for low power triodes due to renewed interest in tube-type audio systems by audiophiles who prefer the pleasantly (warm) distorted sound of tube-based electronics.

Vacuum tube Device that controls electric current between electrodes in an evacuated container

A vacuum tube, an electron tube, valve or tube, is a device that controls electric current flow in a high vacuum between electrodes to which an electric potential difference has been applied.

A tetrode is a vacuum tube having four active electrodes. The four electrodes in order from the centre are: a thermionic cathode, first and second grids and a plate. There are several varieties of tetrodes, the most common being the screen-grid tube and the beam tetrode. In screen-grid tubes and beam tetrodes, the first grid is the control grid and the second grid is the screen grid. In other tetrodes one of the grids is a control grid, while the other may have a variety of functions.

Cold cathode Type of electrode and part of cold cathode fluorescent lamp.

A cold cathode is a cathode that is not electrically heated by a filament. A cathode may be considered "cold" if it emits more electrons than can be supplied by thermionic emission alone. It is used in gas-discharge lamps, such as neon lamps, discharge tubes, and some types of vacuum tube. The other type of cathode is a hot cathode, which is heated by electric current passing through a filament. A cold cathode does not necessarily operate at a low temperature: it is often heated to its operating temperature by other methods, such as the current passing from the cathode into the gas.

Cathodic protection Corrosion prevention technique

Cathodic protection is a technique used to control the corrosion of a metal surface by making it the cathode of an electrochemical cell. A simple method of protection connects the metal to be protected to a more easily corroded "sacrificial metal" to act as the anode. The sacrificial metal then corrodes instead of the protected metal. For structures such as long pipelines, where passive galvanic cathodic protection is not adequate, an external DC electrical power source is used to provide sufficient current.

Spark gap

A spark gap consists of an arrangement of two conducting electrodes separated by a gap usually filled with a gas such as air, designed to allow an electric spark to pass between the conductors. When the potential difference between the conductors exceeds the breakdown voltage of the gas within the gap, a spark forms, ionizing the gas and drastically reducing its electrical resistance. An electric current then flows until the path of ionized gas is broken or the current reduces below a minimum value called the "holding current". This usually happens when the voltage drops, but in some cases occurs when the heated gas rises, stretching out and then breaking the filament of ionized gas. Usually, the action of ionizing the gas is violent and disruptive, often leading to sound, light and heat.

Electron gun

An electron gun is an electrical component in some vacuum tubes that produces a narrow, collimated electron beam that has a precise kinetic energy. The largest use is in cathode ray tubes (CRTs), used in nearly all television sets, computer displays and oscilloscopes that are not flat-panel displays. They are also used in field emission displays (FEDs), which are essentially flat-panel displays made out of rows of extremely small cathode ray tubes. They are also used in microwave linear beam vacuum tubes such as klystrons, inductive output tubes, travelling wave tubes, and gyrotrons, as well as in scientific instruments such as electron microscopes and particle accelerators. Electron guns may be classified by the type of electric field generation, by emission mechanism, by focusing, or by the number of electrodes.

Ignitron

An ignitron is a type of gas-filled tube used as a controlled rectifier and dating from the 1930s. Invented by Joseph Slepian while employed by Westinghouse, Westinghouse was the original manufacturer and owned trademark rights to the name "Ignitron". Ignitrons are closely related to mercury-arc valves but differ in the way the arc is ignited. They function similarly to thyratrons; a triggering pulse to the igniter electrode turns the device "on", allowing a high current to flow between the cathode and anode electrodes. After it is turned on, the current through the anode must be reduced to zero to restore the device to its nonconducting state. They are used to switch high currents in heavy industrial applications.

X-ray tube

An X-ray tube is a vacuum tube that converts electrical input power into X-rays. The availability of this controllable source of X-rays created the field of radiography, the imaging of partly opaque objects with penetrating radiation. In contrast to other sources of ionizing radiation, X-rays are only produced as long as the X-ray tube is energized. X-ray tubes are also used in CT scanners, airport luggage scanners, X-ray crystallography, material and structure analysis, and for industrial inspection.

Krytron Electronic component

The krytron is a cold-cathode gas-filled tube intended for use as a very high-speed switch, somewhat similar to the thyratron. It consists of a sealed glass tube with four electrodes. A small triggering pulse on the grid electrode switches the tube on, allowing a large current to flow between the cathode and anode electrodes. The vacuum version is called a vacuum krytron, or sprytron. The krytron was one of the earliest developments of the EG&G Corporation.

Electrophoretic deposition

Electrophoretic deposition (EPD), is a term for a broad range of industrial processes which includes electrocoating, cathodic electrodeposition, anodic electrodeposition, and electrophoretic coating, or electrophoretic painting. A characteristic feature of this process is that colloidal particles suspended in a liquid medium migrate under the influence of an electric field (electrophoresis) and are deposited onto an electrode. All colloidal particles that can be used to form stable suspensions and that can carry a charge can be used in electrophoretic deposition. This includes materials such as polymers, pigments, dyes, ceramics and metals.

Crookes tube

A Crookes tube is an early experimental electrical discharge tube, with partial vacuum, invented by English physicist William Crookes and others around 1869-1875, in which cathode rays, streams of electrons, were discovered.

Lithium-ion capacitor

A lithium-ion capacitor (LIC) is a hybrid type of capacitor classified as a type of supercapacitor. It is called a hybrid because the anode is the same as those used in lithium-ion batteries and the cathode is the same as those used in supercapacitors. Activated carbon is typically used as the cathode. The anode of the LIC consists of carbon material which is often pre-doped with lithium ions. This pre-doping process lowers the potential of the anode and allows a relatively high output voltage compared to other supercapacitors.

Polymer capacitor

A polymer capacitor, or more accurately a polymer electrolytic capacitor, is an electrolytic capacitor (e-cap) with a solid conductive polymer electrolyte. There are four different types:

Aluminum electrolytic capacitor

Aluminium capacitors are polarized electrolytic capacitors whose anode electrode (+) is made of a pure aluminum foil with an etched surface. The aluminum forms a very thin insulating layer of aluminium oxide by anodization that acts as the dielectric of the capacitor. A non-solid electrolyte covers the rough surface of the oxide layer, serving in principle as the second electrode (cathode) (-) of the capacitor. A second aluminum foil called “cathode foil” contacts the electrolyte and serves as the electrical connection to the negative terminal of the capacitor.

References

  1. Acheson, Edward Goodrich. "Original AquaDAG Patent US844989A". Google. US Patent Office.
  2. "Data Sheet AGG303: Colloidal Graphite - "Aquadag"" (PDF). Products. com Agar Scientific. 2015. Retrieved August 25, 2015.CS1 maint: discouraged parameter (link)
  3. "AQUADAG E - Water Based Colloidal Graphite Resistance Coating" (PDF). Technical data sheet E25/08/00-GL. Emerson & Cuming, a division of National Starch & Chemical. 2000. Retrieved August 25, 2015.CS1 maint: discouraged parameter (link)
  4. 1 2 3 Bali, S. P. (2007). Consumer Electronics. Pearson Education India. pp. 441–442. ISBN   978-8129704962.
  5. 1 2 Gulati, R. R. (2007). Monochrome and Colour Television. New Age International. p. 76. ISBN   978-8122416077.
  6. Avison, John (2014). The World of Physics. Nelson Thomas. p. 338. ISBN   978-0174387336.
  7. Cuff, T. M. (1993). "The Copper Oxide Rectifier". p. 15. doi:10.13140/RG.2.1.3299.0482.