Atrane

Last updated
Atrane.svg

Atranes are a class of tricyclic molecules with three five-membered rings. It is a heterocyclic structure similar to the propellanes. It has a transannular dative bond from a nitrogen at one bridgehead to a Lewis acidic atom such as silicon or boron at the other bridgehead. [1] The name "atrane" was first proposed by Mikhail Grigorievich Voronkov  [ ru ]. [1]

Contents

Nomenclature

Ball-and-stick model of the allyl silatrane molecule Allyl-silatrane-from-xtal-3D-balls.png
Ball-and-stick model of the allyl silatrane molecule

Various atranes are named depending on the central element, e.g. "silatrane" (E = silicon); "boratrane" (E = boron); "phosphatrane" (E = phosphorus), etc. It is also proposed that when Y = nitrogen, the prefix "aza" be inserted before element + "atrane" (azasilatrane, for example) because atranes wherein E = silicon and Y = oxygen have been referred to as just "silatranes". [2]

Structure and properties

From left to right: atrane, quasiatrane and proatrane Atranes.svg
From left to right: atrane, quasiatrane and proatrane

Silatranes exhibit unusual properties as well as biological activity in which the coordination of nitrogen to silane plays an important role. Some derivatives such as phenylsilatrane are highly toxic.

The transannular coordinate bond in atranes can be stretched (quasiatranes) and even broken (proatranes,) by controlling their stereoelectronic properties. The strength of the transannular interaction depends on the electronegativity of the participating atoms and the size of the rings.

Protonation of Verkade base gives an atrane. VerkadeProtn.svg
Protonation of Verkade base gives an atrane.

Proazaphosphatrane is a very strong non-ionic base and is utilized in various types of organic synthesis as an efficient catalyst.

Fe(0)-N2 complex based on atrane framework. PetersFeN2-attrane.svg
Fe(0)-N2 complex based on atrane framework.

See also

Related Research Articles

Functional group

In organic chemistry, a functional group is a substituent or moiety in a molecule that causes the molecule's characteristic chemical reactions. The same functional group will undergo the same or similar chemical reactions regardless of the rest of the molecule's composition. This enables systematic prediction of chemical reactions and behavior of chemical compounds and the design of chemical synthesis. The reactivity of a functional group can be modified by other functional groups nearby. Functional group interconversion can be used in retrosynthetic analysis to plan organic synthesis.

Inorganic chemistry deals with synthesis and behavior of inorganic and organometallic compounds. This field covers chemical compounds that are not carbon-based, which are the subjects of organic chemistry. The distinction between the two disciplines is far from absolute, as there is much overlap in the subdiscipline of organometallic chemistry. It has applications in every aspect of the chemical industry, including catalysis, materials science, pigments, surfactants, coatings, medications, fuels, and agriculture.

Nitrogen Chemical element, symbol N and atomic number 7

Nitrogen is the chemical element with the symbol N and atomic number 7. It was first discovered and isolated by Scottish physician Daniel Rutherford in 1772. Although Carl Wilhelm Scheele and Henry Cavendish had independently done so at about the same time, Rutherford is generally accorded the credit because his work was published first. The name nitrogène was suggested by French chemist Jean-Antoine-Claude Chaptal in 1790 when it was found that nitrogen was present in nitric acid and nitrates. Antoine Lavoisier suggested instead the name azote, from the Ancient Greek: ἀζωτικός "no life", as it is an asphyxiant gas; this name is used instead in many languages, such as French, Italian, Russian, Romanian, Portuguese and Turkish, and appears in the English names of some nitrogen compounds such as hydrazine, azides and azo compounds.

Organic chemistry Subdiscipline of chemistry

Organic chemistry is a branch of chemistry that studies the structure, properties and reactions of organic compounds, which contain carbon in covalent bonding. Study of structure determines their chemical composition and formula. Study of properties includes physical and chemical properties, and evaluation of chemical reactivity to understand their behavior. The study of organic reactions includes the chemical synthesis of natural products, drugs, and polymers, and study of individual organic molecules in the laboratory and via theoretical study.

A period 2 element is one of the chemical elements in the second row of the periodic table of the chemical elements. The periodic table is laid out in rows to illustrate recurring (periodic) trends in the chemical behavior of the elements as their atomic number increases; a new row is started when chemical behavior begins to repeat, creating columns of elements with similar properties.

Aromaticity Phenomenon providing chemical stability in resonating hybrids of cyclic organic compounds

In chemistry, aromaticity is a property of cyclic (ring-shaped), planar (flat) structures with pi bonds in resonance that gives increased stability compared to other geometric or connective arrangements with the same set of atoms. Aromatic rings are very stable and do not break apart easily. Organic compounds that are not aromatic are classified as aliphatic compounds—they might be cyclic, but only aromatic rings have enhanced stability.

Diborane Chemical compound

Diborane(6), generally known as diborane, is the chemical compound consisting of boron and hydrogen with the formula B2H6. It is a colorless, pyrophoric gas with a repulsively sweet odor. Synonyms include boroethane, boron hydride, and diboron hexahydride. Diborane is a key boron compound with a variety of applications. It has attracted wide attention for its electronic structure. Its derivatives are useful reagents.

Intramolecular in chemistry describes a process or characteristic limited within the structure of a single molecule, a property or phenomenon limited to the extent of a single molecule.

In chemistry, catenation is the bonding of atoms of the same element into a series, called a chain. A chain or a ring shape may be open if its ends are not bonded to each other, or closed if they are bonded in a ring. The words to catenate and catenation reflect the Latin root catena, "chain".

In chemistry, the valence or valency of an element is the measure of its combining capacity with other atoms when it forms chemical compounds or molecules.

Borazine Chemical compound

Borazine, also known as borazole, is a polar inorganic compound with the chemical formula B3H6N3. In this cyclic compound, the three BH units and three NH units alternate. The compound is isoelectronic and isostructural with benzene. For this reason borazine is sometimes referred to as “inorganic benzene”. Like benzene, borazine is a colourless liquid with an aromatic smell.

Cyclic compound Molecule with a ring of bonded atoms

A cyclic compound is a term for a compound in the field of chemistry in which one or more series of atoms in the compound is connected to form a ring. Rings may vary in size from three to many atoms, and include examples where all the atoms are carbon, none of the atoms are carbon, or where both carbon and non-carbon atoms are present. Depending on the ring size, the bond order of the individual links between ring atoms, and their arrangements within the rings, carbocyclic and heterocyclic compounds may be aromatic or non-aromatic, in the latter case, they may vary from being fully saturated to having varying numbers of multiple bonds between the ring atoms. Because of the tremendous diversity allowed, in combination, by the valences of common atoms and their ability to form rings, the number of possible cyclic structures, even of small size numbers in the many billions.

Homoaromaticity Special case of aromaticity in which conjugation is interrupted by a single sp³ hybridized carbon atom

Homoaromaticity, in organic chemistry, refers to a special case of aromaticity in which conjugation is interrupted by a single sp3 hybridized carbon atom. Although this sp3 center disrupts the continuous overlap of p-orbitals, traditionally thought to be a requirement for aromaticity, considerable thermodynamic stability and many of the spectroscopic, magnetic, and chemical properties associated with aromatic compounds are still observed for such compounds. This formal discontinuity is apparently bridged by p-orbital overlap, maintaining a contiguous cycle of π electrons that is responsible for this preserved chemical stability.

Annulation

In organic chemistry annulation is a chemical reaction in which a new ring is constructed on a molecule.

Boroles represent a class of molecules known as metalloles, which are heterocyclic 5-membered rings. As such, they can be viewed as structural analogs of cyclopentadiene, pyrrole or furan, with boron replacing a carbon, nitrogen and oxygen atom respectively. They are isoelectronic with the cyclopentadienyl cation C
5
H+
5
(Cp+
)
and comprise four π electrons. Although Hückel's rule cannot be strictly applied to borole, it is considered to be antiaromatic due to having 4 π electrons. As a result, boroles exhibit unique electronic properties not found in other metalloles.

Boron monofluoride or fluoroborylene is a chemical compound with formula BF, one atom of boron and one of fluorine. It was discovered as an unstable gas and only in 2009 found to be a stable ligand combining with transition metals, in the same way as carbon monoxide. It is a subhalide, containing fewer than the normal number of fluorine atoms, compared with boron trifluoride. It can also be called a borylene, as it contains boron with two unshared electrons. BF is isoelectronic with carbon monoxide and dinitrogen; each molecule has 14 electrons.

An insertion reaction is a chemical reaction where one chemical entity interposes itself into an existing bond of typically a second chemical entity e.g.:

Polysilazanes are polymers in which silicon and nitrogen atoms alternate to form the basic backbone. Since each silicon atom is bound to two separate nitrogen atoms and each nitrogen atom to two silicon atoms, both chains and rings of the formula occur. can be hydrogen atoms or organic substituents. If all substituents R are H atoms, the polymer is designated as Perhydropolysilazane, Polyperhydridosilazane, or Inorganic Polysilazane ([H2Si–NH]n). If hydrocarbon substituents are bound to the silicon atoms, the polymers are designated as Organopolysilazanes. Molecularly, polysilazanes are isoelectronic with and close relatives to Polysiloxanes (silicones).

Hydrogen-bridged cations are a type of charged species in which a hydrogen atom is simultaneously bonded to two atoms through partial sigma bonds. While best observable in the presence of superacids at room temperature, spectroscopic evidence has suggested that hydrogen-bridged cations exist in ordinary solvents. These ions have been the subject of debate as they constitute a type of charged species of uncertain electronic structure.

Verkade base Chemical compound

In chemistry, a Verkade base (or Verkade superbase) is a superbase with the formula P(MeNCH2CH2)3N. A colorless oil, it is an aminophosphine although its inventor John Verkade called it proazaphosphatrane. The trimethyl derivative or 2,5,8,9-tetraza-1-phosphabicyclo[3.3.3]undecane is the simplest. Diverse analogues of the Verkade base are known, e.g. with isopropyl groups in place of methyl.

References

  1. 1 2 Voronkov, Mikhail G.; Baryshok, Viktor P. "Atranes - a new generation of biologically active substances" (in Russian) Vestnik Rossiiskoi Akademii Nauk 2010, volume 80, 985-992.
  2. Verkade, John G. (1994). "Main group atranes: Chemical and structural features". Coordination Chemistry Reviews. 137: 233–295. doi:10.1016/0010-8545(94)03007-D.
  3. Verkade, John G.; Urgaonkar, Sameer; Verkade, John G.; Urgaonkar, Sameer (2012). "Proazaphosphatrane". Encyclopedia of Reagents for Organic Synthesis. doi:10.1002/047084289X.rn00702.pub2. ISBN   978-0471936237.
  4. Chalkley, Matthew J.; Drover, Marcus W.; Peters, Jonas C. (2020). "Catalytic N2-to-NH3 (or -N2H4) Conversion by Well-Defined Molecular Coordination Complexes". Chemical Reviews. 120 (12): 5582–5636. doi:10.1021/acs.chemrev.9b00638. PMC   7493999 . PMID   32352271.