Audience response

Last updated

Audience Response is a type of interaction associated with the use of Audience Response systems to create interactivity between a presenter and their audience.

Contents

Systems for co-located audiences combine wireless hardware with presentation software. Systems for remote audiences may use telephones or web polls for audiences watching through television or the internet. Various names are used for this technology, including real-time response, [1] the worm, [2] dial testing, and Audience Response meters. In educational settings, such systems are often called "student response systems" or "personal response systems." The hand-held remote control that students use to convey their responses to questions is often called a "clicker."

More recent entrants into the market do not require specialized hardware. There are commercial, open-source, cloud-based tools that allow responses from the audience using a range of personal computing devices such as cell phones, smartphones, and laptops. These types of systems have added new types of functionality as well, such as free text responses that are aggregated into sortable word clouds, as well as the more traditional true/false and multiple choice style questions. This type of system also mitigates some of the concerns articulated below in the "Challenges of Audience Response" section.

Co-located audiences

Hardware Based Audience Response: The presenter uses a computer and a video projector to project a presentation for the audience to see. In the most common use of such Audience Response systems, presentation slides (built with the Audience Response software) display questions with several possible answers, more commonly referred to as multiple choice questions. The audience participates by selecting the answer they believe to be correct and pushing the corresponding key on their individual wireless keypad. Their answer is then sent to a base station–or receiver–that is also attached to the presenter's computer. The Audience Response software collects the results and the aggregate data is graphically displayed within the presentation for all to see. Some clickers also have additional keys, allowing the presenter to ask (and audience members to answer) true/false questions or even questions calling for particular numerical answers.

Depending on the presenter's requirements, the data can either be collected anonymously (e.g., in the case of voting) or it can be traced to individual participants in circumstances where tracking is required (e.g., classroom quizzes, homework, or questions that ultimately count towards a student's course grade). Incoming data may also be stored in a database that resides on the host computer and data reports can be created after the presentation for further analysis.

Software/Cloud Based Audience Response: The presenter uses a computer to create the questions, sometimes called polls. In this case, however, those questions can be open-ended, dial testing, voteable, open ended, or multiple choice. Those questions are then downloaded into the presenter's presentation program of choice. During the presentation, the questions automatically display within the presentation program, or from a web browser, and can in some cases even be displayed only on the participant's tablet computer or smartphone. Results are instantly tabulated via the internet and presented on screen in real-time, including grading the "correct" answer if desired. Some services offer presenters real time moderation for open-ended responses or questions prior to displaying them on screen.

Depending on the presenter's requirements, the data can be collected anonymously, or it can be traced to individual participants who have created accounts in advance of the poll. This method is commonly used on corporate training where attendance must be verified and in classrooms, where grades must be assigned. Data from both methods can be saved and analyzed by the presenter and loaded manually or via API into learning management systems.

Distributed, virtual, or hybrid

Only software or cloud-based Audience Response systems can accommodate distributed audiences due to the inconveniences and costs of hardware devices.

Benefits

There are many benefits with the use of Audience Response systems (ARS). The tendency to answer based on crowd psychology is reduced because unlike hand raising, it is difficult to see which selection others are making. The ARS also allows for faster tabulation of answers for large groups than manual methods. Additionally, many college professors use ARS systems to take attendance or grade answers in large lecture halls, which would be highly time-consuming without the system.

Audience Response offers many potential benefits to those who use it in group settings.

By providing feedback to an instructor about students' background knowledge and preconceptions, CCS-based pedagogy can help the instructor design learning and experiences appropriate to student's state of knowledge and explicitly confront and resolve misconceptions. By providing frequent feedback about students' ongoing learning and confusions, it can help an instructor dynamically adjust her teaching to students' real, immediate, changing needs. [8]

Challenges of Audience Response

Audience Response systems may present some difficulties in both their deployment and use.

Applications

Audience Response is utilized across a broad range of industries and organizations. A few examples include:

Audience Response systems

An Audience Response system (ARS), or Personal Response System (PRS), allows large groups of people to vote on a topic or answer a question. Depending on the solution chosen, each person has a device with which selections can be made or a mobile device that they can use to respond. In a hardware solution, each remote communicates with a computer via receivers located around the room or via a single receiver connected to the presenter's computer using a USB connector. In a software solution, each device communicates with the question via SMS or the internet. After a set time–or after all participants have answered–the system ends the polling for that particular question and tabulates the results. Typically, the results are instantly made available to the participants via a bar graph displayed on the projector or viewed in a web browser for some systems.

In situations where tracking is required, the serial number of each remote control or the students identity number is entered beforehand in the control computer's database. In this way, the answer of each individual can later be identified.

In addition to the presenter's computer and projector, the typical Audience Response system has the following components:

History

Since the 1960s, a number of companies have offered Response Systems, several of whom are now defunct or changed their business model.

Circa 1966, Audience Studies Institute of Hollywood, California developed a proprietary analog ARS system for evaluating the response of a theater audience to unreleased motion pictures, television shows, and commercials.[ citation needed ] This early ARS was used by ASI's clients– major motion picture and television studios and advertising agencies– to evaluate the effectiveness of what they wanted to accomplish: for example, selling more products, increasing movie ticket sales, and achieving a higher fee per commercial slot. Often, a client would show different versions to different audiences, e.g. different movie endings, to gauge their relative effectiveness. ASI would give out free tickets on the street to bring people into the theater, called the "Preview House" for particular showings. In these showings, each attendee would fill out a questionnaire and then be placed in a seat with a "dial" handset outfitted with a single knob that the attendee would turn to indicate their level of interest. Turning the knob all the way left meant "dull" while turning it to the right meant "great." In 1976, ASI upgraded their system to become fully digital, have Yes/No buttons and, in some cases, numeric keys for entering in numbers, choices and monetary amounts.

Another of the industry's earliest systems was the Consensor. In the late 1960s and early 1970s, William W. (Bill) Simmons, an IBM executive, reflected on how unproductive most meetings were. Simmons had become essentially a nonacademic futurist in building up IBM's long-range planning operations. [9] He was one of the pioneers of applied futures studies in the private sector, that is, future studies applied to corporate planning. Through this work he had met Theodore J. (Ted) Gordon of The Futures Group (now part of Palladium International). [10] Gordon had conceived and partially developed [10] what would today be called an Audience Response system. Simmons immediately saw practical applications for it in large corporate meetings to allow people to air their true opinions in anonymous fashion. So, each individual's Likert scale answer value for a question would remain secret, but the group's average, weighted with weighting factors, would be instantly displayed. Thus (something approximating) the group's true consensus would be known, even though individual middle managers or aspiring junior executives would not have to jeopardize their conformity to effect this result. (IBM's organizational culture was famous for its valuing of conformity; this was common at other firms, too [11] ).

Simmons retired from IBM in January 1972, [12] and soon after he formed a startup company with Gordon, called Applied Futures, Inc., [13] to develop and market the system, which they called the Consensor [connoting consensus + sensor]. Applied Futures was one of the first Audience Response companies. In 1972, while Gordon and his assistant Harold S. (Hal) Becker were still working on development, Applied Futures filed for a patent ( U.S. patent 3,766,541 ), which was granted in 1973 with Gordon and Becker as inventors. Another patent, filed in 1974 and granted in 1976 ( U.S. patent 3,947,669 ), lists Simmons and James A. Marquis. Sales began in 1974. [14]

The Consensor was a system of dials, wires, and three lights: red, yellow, and green. A question was asked verbally and people would turn their dials anywhere from 0 to 10. If the majority agreed, the green lamp would light. If not, either the yellow or red lamp would light, depending on the level of disagreement.

Although business was strong for this fledgling company, [15] the command-and-control management style of the day proved a formidable opponent to this new tool, which promoted consensus building. [16] In his memoir, Simmons describes how junior-executive sales prospects tended to like the idea, imagining themselves heroically speaking truth to power (but not paying any price for being a maverick). Their senior-executive bosses tended to see the Consensor as "a blatant attempt to impose democratic procedures into a corporate hierarchy that is anything but democratic." [16] Simmons observed that "A majority of corporations are run as fiefdoms, with the CEO playing the role of Supreme Power; he may be a benevolent dictator, but nonetheless still a dictator." [16] He described this type of senior executives with ironic tone, stating they were "secure in the knowledge of their own infallibility." [16] Nonetheless, Applied Futures sold plenty of units to business firms and government agencies. [15] In October 1984, it became a subsidiary of Brooks International Corporation, a management consulting firm. [17]

One of the early educational uses of an Audience Response system occurred at Rice University. [18] Students in a computer-equipped classroom were able to rate how well they understood portions of a lecture, answer multiple choice questions, and answer short essay questions. Results could be tallied and displayed to the class.

Audience Response technology has evolved over time, moving away from hardware that required extensive wiring towards hand held wireless devices and small, portable receivers. In the 1980s, the Consensor product line evolved toward peripherals that could be plugged into a PC, and a software application to run thereon. [17] Wireless LANs allow today's peripherals to be cordless. Another example of this is Microsoft's Mouse Mischief, a PowerPoint add-in, which has made it easier for teachers, professors, and office professionals to integrate Audience Response into their presentations.

The advent of smartphones has made it possible for audience members to download an app (or run it as SaaS in their web browser). The app then communicates with the Audience Response system (which is itself just software running on someone's device, whether desktop, laptop, tablet, or phone) via the local wireless network, the cellular telephone network, or both. In this model, the entire audience response system is a software product; all of the hardware is what the users brought with them. [19]

Experts

There are two books that have been written specifically about Audience Response systems by people who are considered experts in the use of Audience Response technology. In 2009, Derek Bruff, a professor at Vanderbilt University, published Teaching with Classroom Response Systems: Creating Active Learning Environments. In 2015, David Campt, a meeting strategist and civic engagement consultant, released Read the Room for Real: How a Simple Technology Creates Better Meetings. This book focused on using Audience Response technology in non-academic environments.

Hardware

The majority of current Audience Response systems use wireless hardware. Two primary technologies exist to transmit data from the keypads to the base stations: infrared (IR) and radio frequency (RF). A few companies also offer Web-based software that routes the data over the internet (sometimes in a unified system with IR and RF equipment). Cell phone-based systems are also becoming available.

Infrared

The oldest of these technologies, IR Audience Response systems are better suited for smaller groups. IR uses the same technology as a TV remote, and is therefore the only one of the four technologies that requires line-of-sight between the keypad and receiver. This works well for a single keypad but can fail due to interference when signals from multiple keypads arrive simultaneously at the receiver. IR systems are typically more affordable than RF systems, but do not provide information back to the keypad.

Use in educational settings

Audience Response systems can be used as a way of incorporating active learning in a lecture or other classroom-type setting, for example by quizzing students, taking a quick survey, or taking attendance. [20] They can be used effectively by students as young as 9 or 10, depending on their maturity level. An educator is able to generate worksheets and let students enter their answer choices at their own pace. After each question, the educator is able to instantly show the results of any quiz, for example in the form of histogram, creating rapid 2-way feedback about how well learners are doing.

The fact that students can send responses anonymously means that sensitive topics can be included more readily than would otherwise be the case. An example of this is in helping students to learn about plagiarism. [21]

Audience Response systems can also be used in classroom settings to simulate randomized controlled trials (RCT) such as "Live the Trial," a mock RCT used to teach the concepts of clinical research. The mock trial answered the question "Do red smarties make you happier?". [22]

Radio frequency (RF)

Ideal for large group environments, RF systems can accommodate hundreds of voters on a single base station. Using some systems, multiple base stations can be linked together in order to handle audiences that number in thousands. Other systems allow over a thousand on just one base. Because the data travels via radio frequency, the participant merely needs to be within range of the base station (300 – 500 feet). Some advanced models can accommodate additional features, such as short word answers, user log-in capabilities, and even multi-site polling.

Internet

Web-based Audience Response systems work with the participants' existing computing devices. These include notebook computers, smartphones and PDAs, which are typically connected to the internet via Wi-Fi, as well as classroom desktop computers. If the facilitator's computer is also Wi-Fi-enabled, they can even create their own IP network, allowing a closed system that doesn't depend on a separate base station. The web server resides on or is accessible to the facilitator's computer, letting them control a set of web pages presenting questions. Participants log into the server using web browsers and see the questions with forms to input their responses. The summarized responses are available on a different set of pages, which can be displayed through the projector and also on each participant's device.

Internet has also made it possible to gather audience responses in massive scale. Various implementations of the concept exist. For example, Microsoft featured Bing Pulse [23] during the 2013 State of The Union (US) address by President Barack Obama. The system allowed registered users to input their responses (positive, negative, neutral) to the address and visualized the results as a trending graph in real time. Bing Pulse has since been used to cast over 35 million votes during national news broadcasts and other live meetings. [24] Over 10,000 viewers powered the iPowow Viewer Vote [25] which tracked live viewer emotional response for Channel 7 during the 2013 Australian Federal Election debates and displayed as a live "worm" graph on the broadcast screen. For advertising and media research, online "dial testing" using an onscreen scale slider that is controlled by a mouse (or finger swipe on a touchscreen) is being used in conjunction with surveys and online communities to gather continuous feedback on video or audio files.

Cell phones

The familiarity and widespread use of cell phones and text messaging has now given rise to systems that collect SMS responses and display them through a web page. [26] These solutions don't require specialized voting hardware, but they do require telecom hardware (such as a mobile phone) and software along with a web server and tend to be operated by dedicated vendors selling usage. They are typically favored by traveling speaking professionals and large conference halls that don't want to distribute, rent, or purchase proprietary ARS hardware. Computing devices with web browsers can also use these serviceLLs through SMS gateways, if a separate web interface isn't provided.

Cell phone enabled response systems, such as SMS Response System, are able to take text inputs from the audience and receive multiple responses to questions per SMS. This allows a new pedagogical approach to teaching and learning, such as the work by Derek Bruff and an initiative on SMSRS.

The advantage of using such SMS type of response system is not limited to the logistical advantage of the presenter keeping no device inventory, it comes with an associated range of pedagogical advantages, such as agile learning and peer instruction (as possible with all types of response systems). SMS affords additional educational features like MCQ-Reasoning– a feature developed in a SMSRS system in Singapore that allows respondents to tag a reason to their choice of options in an MCQ. This eliminates the potential of "guessing-the-correct-answer" syndrome and text mining of SMS responses (to provide the gist of the messages collectively in a visual map).

Interactive SMS Forum is another feature that is proprietary to SMS-type response systems where audiences not only post their questions, but can also answer the questions posted by others via SMS.

Smartphone / HTTP voting

With increasing penetration of smartphones with permanent internet connections, live Audience Response/voting can be achieved over the HTTP protocol. SMS is still a solid solution because of its penetration and stability, but won't easily allow multi-voting support and might cause problem with multi-country audiences. The issue with SMS not supporting multi-country audiences is projected to be solved with SMS hubbing.

In classrooms and conferences with Wi-Fi support or anywhere with GPRS coverage, software systems can be used for live audience feedback, mood measurement, or live polling. These systems frequently support voting with both mobile apps as well as mobile browsers. These apps invoke available local area networks (LAN) and provide a charge-free and cuts the needs to devoted hardware. [27]

With mobile apps and browser enabled voting, there aren't any setup costs for hardware since the audience uses their own phones as voting devices and the result is often presented in any browser controlled by the lecturer.

With a standard mobile browser solution, these are click and go solutions without additional installations. Therefore, live audiences can be reached, and smartphone voting can be used–as with SMS–in any number of different locations. With the GPRS solution the audience does not necessary need to be in the same area as the lecturer as with radio frequency, infrared or Bluetooth-based response systems.

Software

Audience Response software enables the presenter to collect participant data, display graphical polling results, and export the data to be used in reporting and analysis. Usually, the presenter can create and deliver her entire presentation with the ARS software, either as a stand-alone presentation platform or as a plug-in to PowerPoint or Keynote.

See also

Related Research Articles

Multimedia is a form of communication that uses a combination of different content forms, such as writing, audio, images, animations, or video, into a single interactive presentation, in contrast to traditional mass media, such as printed material or audio recordings, which feature little to no interaction between users. Popular examples of multimedia include video podcasts, audio slideshows, and animated videos. Multimedia also contains the principles and application of effective interactive communication, such as the building blocks of software, hardware, and other technologies. The five main building blocks of multimedia are text, image, audio, video, and animation. The first building block of multimedia is the image, which dates back 15,000 to 10,000 B.C. with concrete evidence found in the Lascaux caves in France. The second building block of multimedia is writing, which was first scribed in stone or on clay tablets and was mostly about three things. Property, conquest, and religion. Writing was soon abstracted from visual images into symbols that represented the sounds we make with our mouths. Thanks to the Egyptians, writing was evolved and transferred from stone to Papyrus. A cheaper but more fragile canvas derived from strips of the papyrus root grown on the Nile River.

Educational software is a term used for any computer software that is made for an educational purpose. It encompasses different ranges from language learning software to classroom management software to reference software. The purpose of all this software is to make some part of education more effective and efficient.

<span class="mw-page-title-main">Presentation program</span> Software package used to display information in the form of a slide show

In computing, a presentation program is a software package used to display information in the form of a slide show. It has three major functions:

<span class="mw-page-title-main">Computer lab</span> Facility for public access to desktop computers or laptops

A computer lab is a space where computer services are provided to a defined community. These are typically public libraries and academic institutions. Generally, users must follow a certain user policy to retain access to the computers. This usually consists of rules such as no illegal activity during use or attempts to circumvent any security or content-control software while using the computers.

M-learning, or mobile learning, is a form of distance education where learners use portable devices such as mobile phones to learn anywhere and anytime. The portability that mobile devices provide allows for learning anywhere, hence the term "mobile" in "mobile learning." M-learning devices include computers, MP3 players, mobile phones, and tablets. M-learning can be an important part of informal learning.

<span class="mw-page-title-main">Web conferencing</span> Forms of online many-to-many communication

Web conferencing is used as an umbrella term for various types of online conferencing and collaborative services including webinars, webcasts, and web meetings. Sometimes it may be used also in the more narrow sense of the peer-level web meeting context, in an attempt to disambiguate it from the other types known as collaborative sessions. The terminology related to these technologies is exact and agreed relying on the standards for web conferencing but specific organizations practices in usage exist to provide also term usage reference.

Backchannel is the use of networked computers to maintain a real-time online conversation alongside the primary group activity or live spoken remarks. The term was coined from the linguistics term to describe listeners' behaviours during verbal communication.

<span class="mw-page-title-main">Interactive whiteboard</span> Large interactive display

An interactive whiteboard (IWB), also known as interactive board or smart board, is a large interactive display board in the form factor of a whiteboard. It can either be a standalone touchscreen computer used independently to perform tasks and operations, or a connectable apparatus used as a touchpad to control computers from a projector. They are used in a variety of settings, including classrooms at all levels of education, in corporate board rooms and work groups, in training rooms for professional sports coaching, in broadcasting studios, and others.

Educational technology is the combined use of computer hardware, software, and educational theory and practice to facilitate learning. When referred to with its abbreviation, "EdTech," it often refers to the industry of companies that create educational technology. In EdTech Inc.: Selling, Automating and Globalizing Higher Education in the Digital Age, Tanner Mirrlees and Shahid Alvi (2019) argue "EdTech is no exception to industry ownership and market rules" and "define the EdTech industries as all the privately owned companies currently involved in the financing, production and distribution of commercial hardware, software, cultural goods, services and platforms for the educational market with the goal of turning a profit. Many of these companies are US-based and rapidly expanding into educational markets across North America, and increasingly growing all over the world."

Technology integration is defined as the use of technology to enhance and support the educational environment. Technology integration in the classroom can also support classroom instruction by creating opportunities for students to complete assignments on the computer rather than with normal pencil and paper. In a larger sense, technology integration can also refer to the use of an integration platform and application programming interface (API) in the management of a school, to integrate disparate SaaS applications, databases, and programs used by an educational institution so that their data can be shared in real-time across all systems on campus, thus supporting students' education by improving data quality and access for faculty and staff.

"Curriculum integration with the use of technology involves the infusion of technology as a tool to enhance the learning in a content area or multidisciplinary setting... Effective technology integration is achieved when students can select technology tools to help them obtain information on time, analyze and synthesize it, and present it professionally to an authentic audience. Technology should become an integral part of how the classroom functions—as accessible as all other classroom tools. The focus in each lesson or unit is the curriculum outcome, not the technology."

Computer-assisted web interviewing (CAWI) is an Internet surveying technique in which the interviewee follows a script provided in a website. The questionnaires are made in a program for creating web interviews. The program allows for the questionnaire to contain pictures, audio and video clips, links to different web pages, etc. The website is able to customize the flow of the questionnaire based on the answers provided, as well as information already known about the participant. It is considered to be a cheaper way of surveying since one doesn't need to use people to hold surveys unlike computer-assisted telephone interviewing. With the increasing use of the Internet, online questionnaires have become a popular way of collecting information. The design of an online questionnaire has a dramatic effect on the quality of data gathered. There are many factors in designing an online questionnaire; guidelines, available question formats, administration, quality and ethic issues should be reviewed. Online questionnaires should be seen as a sub-set of a wider-range of online research methods.

Lecture recording refers to the process of recording and archiving the content of a lecture, conference, or seminar. It consists of hardware and software components that work in synergy to record the audio and visual components of the lecture. It is widely used in universities and higher education in the UK and Australia to provide support for students. 71% of institutions responding to a UCISA survey in 2016 indicated that this technology was available in their institution. Where lecture recording is done at scale, the recording system may be integrated with the timetabling system and the collection of metadata may be automated.

Adaptive learning, also known as adaptive teaching, is an educational method which uses computer algorithms as well as artificial intelligence to orchestrate the interaction with the learner and deliver customized resources and learning activities to address the unique needs of each learner. In professional learning contexts, individuals may "test out" of some training to ensure they engage with novel instruction. Computers adapt the presentation of educational material according to students' learning needs, as indicated by their responses to questions, tasks and experiences. The technology encompasses aspects derived from various fields of study including computer science, AI, psychometrics, education, psychology, and brain science.

Mobile marketing research is a method of data collection using the functions of mobile devices, like mobile phones, smartphones, and PDAs. With increasing members of the public having access to personal mobile devices in the 21st century, mobile marketing research developed as a way to utilize mobile communication for research purposes.

With the application of probability sampling in the 1930s, surveys became a standard tool for empirical research in social sciences, marketing, and official statistics. The methods involved in survey data collection are any of a number of ways in which data can be collected for a statistical survey. These are methods that are used to collect information from a sample of individuals in a systematic way. First there was the change from traditional paper-and-pencil interviewing (PAPI) to computer-assisted interviewing (CAI). Now, face-to-face surveys (CAPI), telephone surveys (CATI), and mail surveys are increasingly replaced by web surveys. In addition, remote interviewers could possibly keep the respondent engaged while reducing cost as compared to in-person interviewers.

Mobile computer-supported collaborative learning may have different meanings depending on the context in which it is applied. Mobile CSCL includes any in-class and out-of-class use of handheld mobile devices such as cell phones, smart phones, and personal digital assistants (PDAs) to enable collaborative learning.

Live conferencing refers to the live streaming of interactive audio and video presentations, lectures, meetings, and seminars to the global audience with the help of a camera and conferencing equipment. Such equipment lets businesses connect and coordinate with remote workforces located in different region, engage them in productive real-time discussions, and record individual or group responses.

William Wilson Simmons was an IBM executive, who was Director of Strategic Planning for the IBM Corporation in the late 1960s. He is also known as one of the pioneers of applied futures studies in the private sector.

<span class="mw-page-title-main">Stanford Mobile Inquiry-based Learning Environment</span>

Stanford Mobile Inquiry-based Learning Environment (SMILE) is a mobile learning management software and pedagogical model that introduces an innovative approach to students' education. It is designed to push higher-order learning skills such as applying, analyzing, evaluating, and creating. Instead of a passive, one-way lecture, SMILE engages students in an active learning process by encouraging them to ask, share, answer and evaluate their own questions. Teachers play more of the role of a “coach,” or “facilitator”. The software generates transparent real-time learning analytics so teachers can better understand each student's learning journey, and students acquire deeper insight regarding their own interests and skills. SMILE is valuable for aiding the learning process in remote, poverty-stricken, underserved countries, particularly for cases where teachers are scarce. SMILE was developed under the leadership of Dr. Paul Kim, Reuben Thiessen, and Wilson Wang.

<span class="mw-page-title-main">Wooclap</span>

Wooclap is an interactive electronic platform used to create polls and questionnaires. The site's users answer questions anonymously through technology devices such as smartphones or laptops.

References

  1. Zilberstein, Shirley. "CNN to track debate viewers' responses in real time". edition.cnn.com.
  2. "What is a Worm Poll?". wisegeek.com. 30 November 2023.
  3. Kaleta, Robert; Joosten, Tanya (May 8, 2007). "Student Response Systems: A University of Wisconsin System Study of Clickers". Educause Center for Applied Research Research Bulletin. 2007 (10): 4–6. A public version of the information, in the form of a PowerPoint presentation about the findings, is available at: http://www.educause.edu/ir/library/pdf/EDU06283.pdf.
  4. 1 2 Kaleta, Robert, and Joosten, Tanya. "Student Response Systems: A University of Wisconsin System Study of Clickers," Educause Center for Applied Research Research Bulletin. Vol. 2007, Issue 10, May 8, 2007, pp. 6–7. A public version of the information, in the form of a PowerPoint presentation about the findings, is available at: http://www.educause.edu/ir/library/pdf/EDU06283.pdf.
  5. Crouch, Catherine H.; Mazur, Eric (September 2001). "Peer Instruction: Ten years of experience and results". Am. J. Phys. 69 (9): 970. Bibcode:2001AmJPh..69..970C. doi:10.1119/1.1374249. S2CID   1893994.
  6. Crouch, Catherine H., and Mazur, Eric. "Peer Instruction: Ten years of experience and results." Am. J. Phys. Vol. 69, No. 9, September 2001. pp. 971–72. Available at .
  7. Miller, Redonda G., Ashar, Bimal H. and Getz, Kelly J. "Evaluation of an audience response system for the continuing education of health professionals." Journal of Continuing Education in the Health Professions. Vol. 23, No. 2, 2003. pp.109–115. Abstract at
  8. 1 2 Beatty, Ian. "Transforming Student Learning with Classroom Communication Systems," Educause Center for Applied Research Research Bulletin. Volume 2004, Issue 3 (February 3, 2004), p. 5. Available online at http://www.educause.edu/ir/library/pdf/ERB0403.pdf.
  9. Simmons & Elsberry 1988 , pp. 138–187.
  10. 1 2 Simmons & Elsberry 1988 , p. 188.
  11. Simmons & Elsberry 1988 , pp. 188–189.
  12. Simmons & Elsberry 1988 , p. 187.
  13. Simmons & Elsberry 1988 , pp. 188–193.
  14. Simmons & Elsberry 1988 , p. 190.
  15. 1 2 Simmons & Elsberry 1988 , pp. 191–193.
  16. 1 2 3 4 Simmons & Elsberry 1988 , pp. 190–191.
  17. 1 2 Simmons & Elsberry 1988 , p. 193.
  18. Lane, David, and Atlas, Robert. "The Networked Classroom," Paper presented at the 1996 meeting of Computers and Psychology, York, UK, March 1996. Abstract available at: "http://scholarship.rice.edu/bitstream/handle/1911/78034/networked_classroom_%28Audience_Response_System%29-1.pdf?sequence=1 Archived 2014-12-23 at the Wayback Machine "
  19. Devaney 2011.
  20. Martyn, Margie (2007). "Clickers in the Classroom: An Active Learning Approach". EDUCAUSE Quarterly (EQ). 30 (2). Archived from the original on 2009-10-28. Retrieved 2009-10-30.
  21. Newton, Philip (2 April 2016). "Academic integrity: a quantitative study of confidence and understanding in students at the start of their higher education". Assessment & Evaluation in Higher Education. 41 (3): 482–497. doi:10.1080/02602938.2015.1024199. S2CID   144164927.
  22. Baker, Philip R. A.; Francis, Daniel P.; Cathcart, Abby (2017-04-22). "A Mock Randomized Controlled Trial With Audience Response Technology for Teaching and Learning Epidemiology" (PDF). Asia-Pacific Journal of Public Health. 29 (3): 229–240. doi:10.1177/1010539517700473. PMID   28434251. S2CID   24488124.
  23. State of the Union – Bing Politics Archived April 29, 2013, at the Wayback Machine , Retrieved on 27 April 2013
  24. "Microsoft - Official Home Page".
  25. "Crowdsourcing the worm: the Aussie start-up tracking the election debate". businessspectator.com.au. 12 August 2013.
  26. Tremblay, Eric (April 2010). "(2010) Educating the Mobile Generation – using personal cell phones as audience response systems in post-secondary science teaching". Journal of Computers in Mathematics and Science Teaching. 29 (2): 217–227. Archived from the original on 31 October 2010. Retrieved 2010-11-05.
  27. "Audience response system". youconnect.ir. Retrieved 2015-10-30.

Bibliography