Avro Canada Orenda

Last updated
TR5 Orenda
Avro Canada Orenda 10 RRHT Derby.jpg
Avro Canada Orenda 10 turbojet engine on display at the Rolls-Royce Heritage Trust, Derby
Type Turbojet
National origin Canada
Manufacturer Avro Canada
First run1949
Major applications Avro CF-100
Canadair Sabre
Number built4000+
Developed from Avro Canada Chinook

The Avro Canada TR5 Orenda was the first production jet engine from Avro Canada's Gas Turbine Division. Similar to other early jet engines in design, like the Rolls-Royce Avon or General Electric J47.

Contents

Over 4,000 Orendas of various marks were delivered during the 1950s.

Development

The Orenda design started in the summer of 1946 when the Royal Canadian Air Force (RCAF) placed an order with Avro Canada for a new night/all-weather fighter. To power the design, Avro decided to build their own engines. Avro had recently purchased Turbo Research, a former crown corporation set up in Leaside, Toronto, to develop jet engines.

Turbo Research was in the midst of designing their first engine, the 3,000 lbf (13 kN) TR.4 Chinook, which could easily be scaled up for the new fighter design. It was decided to continue working on the Chinook to gain experience even though they had no intention of producing it.

As work on the Chinook continued, Avro's newly christened Gas Turbine Division started work on the larger 6,000 lbf (27 kN) thrust design needed for the RCAF contract. Winnett Boyd started detailed design in autumn 1946, and a formal contract was received in April 1947. The only major change was the addition of a tenth compressor stage of stainless steel, and changing the third stage from aluminum to steel as well. The design work was completed on 15 January 1948, just prior to the first run of the Chinook on 17 March 1948. During the design Joseph Lucas of the UK was contracted to help with the combustion design, which led to a slight delay as they recommended using a longer combustion chamber than originally designed. The resulting TR-5 was named "Orenda", an Iroquois word meaning "Tribal Soul on the Right Path".

Given the experience of the Chinook, and the fact that the two designs were similar in many ways, progress on the Orenda was rapid. Parts started arriving in 1948, and the first engine was completed and run for the first time on 8 February 1949. Avro was so confident of the design that they invited high-ranking officials from the RCAF and Canadian government to witness this very first test, which went off without a hitch after fixing a minor electrical problem. Within two months the engine had already passed 100 hours of running time, and on 10 May had reached its design thrust of 6,000 lbf (27 kN). At the time, it was the most powerful jet engine in the world, although it held this record only briefly until the Rolls-Royce Avon RA.3 was introduced the next year.

By 1 July it had passed 500 hours, and had run for 477 of these before requiring a rebuild. In September it was on its way to 1,000 hours when a technician's lab coat was sucked into the engine, complete with a set of razor blades in his pocket. From then on testing was carried out with a set of metal rings in the intake to avoid ingesting foreign objects. After repairing the damage the engine returned to testing, now joined by two further examples of the Orenda 1. Together they passed a total of 2,000 hours by 10 February 1950. By this point a problem with fatigue cracks in the seventh and eighth stages had become apparent, which required them to be redesigned and made much thicker. This solved the problem, and by July they had passed 3,000 hours.

Flight testing started with a converted Avro Lancaster, FM209 , one of the many Mk.10's built at the Victory Aircraft (now Avro) plants during the war. The two outboard Merlin engines were replaced with the Orendas, and the new aircraft took to the sky on 10 July. Avro test pilots flight tested the aircraft across Lake Ontario to the Buffalo, New York area, where they were able to easily outperform the P-47 Thunderbolts of the Air National Guard that were sent to investigate. [1] In one incident at an airshow, all four engines were turned off by mistake, but the Orenda's quick start time allowed them to save the day. [1] The aircraft ran up 500 hours by July 1954, when this portion of flight testing ended; it was destroyed in a hangar fire on 24 July 1956.

Production

The Orenda 2 was the first production model, passing its qualification tests in February 1952. This version showed additional cracking in the ninth stage, and had to be strengthened like the earlier model. Even before being qualified, the engine had been fitted to the Avro CF-100 and flown on 20 June 1952, with a squadron of pre-production Mk.2 aircraft entering RCAF service on 17 October. The Orenda 3 was similar, but had a number of modifications to allow it to be mounted in the Sabre in place of the J47. One example was produced and sent to North American Aviation.

The first real production model was the Orenda 8, which was the powerplant of the CF-100 Mk.3. This model was first flown in September 1952 and entered service in 1953. This was soon followed by the Orenda 9 powered Mk.4 that flew on 11 October 1952, and then by the rocket-armed Mk.4A with the 7,400 lbf (33 kN)Orenda 11. The Orenda 11 demanded higher airflow through the engine, and featured a second turbine stage to power the more powerful compressor. The 11 would be the primary production version for the CF-100, powering the Mk.4A and all future versions, with over 1,000 engines produced.

While work on the CF-100 continued the RCAF also started looking at a new day fighter, eventually selecting the Sabre. A single Sabre 3 was built with the Orenda 4 engine, with performance similar to the US models. Production then turned to the Sabre 5 with the Orenda 10, and then to the Sabre 6 with the Orenda 11-derived 7,500 lbf (33,000 N) thrust Orenda 14. The resulting Sabre was both lighter and more powerful than its J47 powered counterparts, and went on to set a number of air speed records. Most notable among these was Jacqueline Cochran's supersonic flight in the sole Sabre 3, which Canadair loaned to her for the effort. Canadair built 1,815 Sabres in total, 937 of these equipped with Orendas. Several examples, notably one at Boeing, serving into the 1970s.

The engine was so successful that the Gas Turbine Division was renamed Orenda Engines when Hawker Siddeley reorganized their Canadian operations in 1955.

By 1953 the Orenda was planned to have been joined by an engine in the 10,000 lbf (44 kN) thrust range, the Waconda. [2]

Design

The Orenda was fairly conventional in layout, built in three main parts; compressor, combustion area, and turbine/exhaust.

At the front was the compressor section, containing the ten-stage compressor housed in a tapering magnesium alloy shell. The shell was machined with grooves that held the stators. At the front of the compressor was an intake fairing with a prominent "nose cone" containing the front main bearing. Four guide vanes held the cone in place, with two power takeoff shafts running inside two of them to power the top- and bottom-mounted accessories section (fuel pumps, oil pumps). The nose cone also held the electric starter motor, which acted as a generator once the engine was up and running. The engines used on the CF-100 also contained a uniquely Canadian invention, two prominent winglets at the very front that sprayed alcohol into the intake as a de-icing system. The CF-100 versions also mounted the debris cage, mentioned earlier.

The compressor had ten axial stages of mixed steel and aluminum construction. In the original Orenda 8, 9 and 10's this operated at a 5.5:1 compression ratio, compared to about 3.5 for wartime designs. The hub consisted of three aluminum disks carrying the first nine stages, and a steel disk bolted onto the end carrying the tenth. The central casing held the power shaft and was made from magnesium alloy. Around it were the six flame cans. The turbine was made of solid Inconel blades attached to an austenitic steel hub. The blades were air cooled by bleeding off compressed air from the fifth compressor stage and piping it to the turbine face, the six pipes lying between the flame cans. The exhaust section consisted of welded steel sheeting.

Variants

Orenda 14 Avro Canada Orenda 14 2010-05-09.JPG
Orenda 14

Data from:Aircraft engines of the World 1959/60, [3] Aircraft engines of the World 1953 [4]

Orenda 1
original prototype models, 6,000 lbf (27 kN)
Orenda 2
first production model
Orenda 3
An Orenda 1 modified for installation in a North American F-86A Sabre, becoming the first Orenda to fly under its own power. [5]
Orenda 8
improved reliability, 6,000 lbf (27 kN)
Orenda 9
improved thrust, 6,500 lbf (29 kN), required some changes to the nacelles
Orenda 10
Orenda 9 adapted for the Sabre
Orenda 11
main production version for the CF-100, 7,400 lbf (33 kN)
Orenda 11R
with afterburner
Orenda 14
similar to the 7,500 lbf (33 kN) Orenda 11, used on both the CF-100 and Sabre
Orenda 17
combined the compressor from the 9 with the turbine of the 11, along with an afterburner 8,490 lbf (37.8 kN) wet

Specifications (Orenda 14)

Data from Aircraft engines of the World 1959/60 [3]

General characteristics

Components

Performance

Turbine Inlet Temperature (TIT): 1,682 °F (917 °C; 1,190 K) at 7,800 rpm
Jet Pipe Temperature (JPT): 1,319 °F (715 °C; 988 K) at 7,800 rpm

See also

Comparable engines

Related lists

Related Research Articles

<span class="mw-page-title-main">Avro Canada CF-105 Arrow</span> Canadian interceptor aircraft family

The Avro Canada CF-105 Arrow was a delta-winged interceptor aircraft designed and built by Avro Canada. The CF-105 held the promise of Mach 2 speeds at altitudes exceeding 50,000 feet (15,000 m) and was intended to serve as the Royal Canadian Air Force's (RCAF) primary interceptor into the 1960s and beyond.

<span class="mw-page-title-main">Avro Canada</span> Defunct Canadian aircraft manufacturer

Avro Canada was a Canadian aircraft manufacturing company. It was founded in 1945 as an aircraft plant and within 13 years became the third-largest company in Canada, one of the largest 100 companies in the world, and directly employing over 50,000. Avro Canada was best known for the CF-105 Arrow, but through growth and acquisition, it rapidly became a major, integrated company that had diverse holdings.

<span class="mw-page-title-main">Rolls-Royce Olympus</span> Supersonic turbojet engine with afterburner

The Rolls-Royce Olympus was the world's second two-spool axial-flow turbojet aircraft engine design, first run in May 1950 and preceded only by the Pratt & Whitney J57, first-run in January 1950. It is best known as the powerplant of the Avro Vulcan and later models in the Concorde SST.

<span class="mw-page-title-main">Avro Canada CF-100 Canuck</span> Interceptor aircraft in service 1952-1981

The Avro Canada CF-100 Canuck is a Canadian twinjet interceptor/fighter designed and produced by aircraft manufacturer Avro Canada. It has the distinction of being the only Canadian-designed fighter to enter mass production.

<span class="mw-page-title-main">General Electric J79</span> Axial flow turbojet engine

The General Electric J79 is an axial-flow turbojet engine built for use in a variety of fighter and bomber aircraft and a supersonic cruise missile. The J79 was produced by General Electric Aircraft Engines in the United States, and under license by several other companies worldwide. Among its major uses was the Lockheed F-104 Starfighter, Convair B-58 Hustler, McDonnell Douglas F-4 Phantom II, North American A-5 Vigilante and IAI Kfir.

<span class="mw-page-title-main">Pratt & Whitney J75</span> Turbojet engine

The Pratt & Whitney J75 is an axial-flow turbojet engine first flown in 1955. A two-spool design in the 17,000 lbf (76 kN) thrust class, the J75 was essentially the bigger brother of the Pratt & Whitney J57 (JT3C). It was known in civilian service as the JT4A, and in a variety of stationary roles as the GG4 and FT4.

<span class="mw-page-title-main">Allison J35</span>

The General Electric/Allison J35 was the United States Air Force's first axial-flow compressor jet engine. Originally developed by General Electric in parallel with the Whittle-based centrifugal-flow J33, the J35 was a fairly simple turbojet, consisting of an eleven-stage axial-flow compressor and a single-stage turbine. With the afterburner, which most models carried, it produced a thrust of 7,400 lbf (33 kN).

<span class="mw-page-title-main">Rolls-Royce Avon</span> 1940s British turbojet aircraft engine

The Rolls-Royce Avon was the first axial flow jet engine designed and produced by Rolls-Royce. Introduced in 1950, the engine went on to become one of their most successful post-World War II engine designs. It was used in a wide variety of aircraft, both military and civilian, as well as versions for stationary and maritime power.

<span class="mw-page-title-main">Rolls-Royce Derwent</span> 1940s British turbojet aircraft engine

The Rolls-Royce RB.37 Derwent is a 1940s British centrifugal compressor turbojet engine, the second Rolls-Royce jet engine to enter production. It was an improved version of the Rolls-Royce Welland, which itself was a renamed version of Frank Whittle's Power Jets W.2B. Rolls-Royce inherited the Derwent design from Rover when they took over their jet engine development in 1943.

<span class="mw-page-title-main">Metropolitan-Vickers F.2</span> Early turbojet engine

The Metropolitan-Vickers F.2 is an early turbojet engine and the first British design to be based on an axial-flow compressor. It was an extremely advanced design for the era, using a nine-stage axial compressor, annular combustor, and a two-stage turbine.

<span class="mw-page-title-main">General Electric J47</span> Turbojet Engine developed in 1947

The General Electric J47 turbojet was developed by General Electric from its earlier J35. It first flew in May 1948. The J47 was the first axial-flow turbojet approved for commercial use in the United States. It was used in many types of aircraft, and more than 30,000 were manufactured before production ceased in 1956. It saw continued service in the US military until 1978. Packard built 3,025 of the engines under license.

<span class="mw-page-title-main">Canadair Sabre</span> Canadian licensed built F-86 Sabre

The Canadair Sabre is a jet fighter aircraft built by Canadair under licence from North American Aviation. A variant of the North American F-86 Sabre, it was produced until 1958 and used primarily by the Royal Canadian Air Force (RCAF) until replaced with the Canadair CF-104 in 1962. Several other air forces also operated the aircraft.

<span class="mw-page-title-main">Orenda Engines</span>

Orenda Engines was a Canadian aircraft engine manufacturer and parts supplier. As part of the earlier Avro Canada conglomerate, which became Hawker Siddeley Canada, they produced a number of military jet engines from the 1950s through the 1970s, and were Canada's primary engine supplier and repair company.

<span class="mw-page-title-main">Orenda Iroquois</span> 1950s Canadian turbojet aircraft engine

The Orenda PS.13 Iroquois was an advanced turbojet engine designed for military use. It was developed by the Canadian aircraft engine manufacturer Orenda Engines, a part of the Avro Canada group. Intended for the CF-105 Arrow interceptor, development was cancelled, along with the Arrow, in 1959.

The Rolls-Royce RB.106 was an advanced military turbojet engine design of the 1950s by Rolls-Royce Limited. The work was sponsored by the Ministry of Supply. The RB.106 project was cancelled in March 1957, at a reported total cost of £100,000.

The Avro Canada TR.4 Chinook was Canada's first turbojet engine, designed by Turbo Research and manufactured by A.V. Roe Canada Ltd. Named for the warm Chinook wind that blows in the Rocky Mountains, only three Chinooks were built and none were used operationally. After being scaled up from 2,600 lbf (12 kN) to 6,500 lbf (29 kN), it would become the Orenda.

<span class="mw-page-title-main">General Electric J73</span> 1950s American turbojet engine

The General Electric J73 turbojet was developed by General Electric from the earlier J47 engine. Its original USAF designation was J47-21, but with innovative features including variable inlet guide vanes, double-shell combustor case, and 50% greater airflow was redesignated J73. Its only operational use was in the North American F-86H.

<span class="mw-page-title-main">Avro Canada CF-103</span> Cancelled military aircraft

The Avro Canada CF-103 was a proposed Canadian interceptor, designed by Avro Canada in the early 1950s as a development, and possible replacement of the company's CF-100 Canuck, that was entering service at the time with the Royal Canadian Air Force (RCAF). Although intended to be capable of flying at transonic speeds, the CF-103 only offered a moderate increase in performance and capability over the CF-100; subsequently, the aircraft never progressed beyond the mock-up stage.

<span class="mw-page-title-main">STAL Dovern</span> 1950s Swedish turbojet aircraft engine

The STAL Dovern was a Swedish turbojet design of the early 1950s, named after a lake in Finspång municipality in Östergötland, Sweden. Intended to power the Saab 35 Draken, this aircraft was powered by the Rolls-Royce Avon instead. The Dovern did not enter production.

<span class="mw-page-title-main">Rolls-Royce Olympus variants</span> Range of British turbojet aircraft engines

The Rolls-Royce Olympus turbojet engine was developed extensively throughout its production run, the many variants can be described as belonging to four main groups.

References

  1. 1 2 Milberry, Larry, The Avro Canada CF-100, McGraw Hill Ryerson, Toronto, 1981 ISBN   0-9690703-0-6 pp.46
  2. "Archived copy". Archived from the original on 2012-11-04. Retrieved 2011-02-23.{{cite web}}: CS1 maint: archived copy as title (link)
  3. 1 2 Wilkinson, Paul H. (1959). Aircraft engines of the World 1959/60 (15th ed.). London: Sir Isaac Pitman & Sons Ltd. pp. 180–183.
  4. Wilkinson, Paul H. (1953). Aircraft engines of the World 1953 (11th ed.). London: Sir Isaac Pitman & Sons Ltd. pp. 180–181.
  5. Bridgman, Leonard (1955). Jane's all the World's Aircraft 1955-56. London: Jane's all the World's Aircraft Publishing Co. Ltd.

Further reading