Axinite-(Mg)

Last updated
Axinite-(Mg)
Axinite-(Mg)-396672.jpg
Crystal fragment of gem axinite-(Mg) from Merelani Hills,Manyara, Tanzania
General
Category Silicate mineral
Formula
(repeating unit)
Ca2MgAl2BSi4O15OH
Crystal system Triclinic
Identification
ColorLight blue, pink
Crystal habit Crystals with the characteristic axe shape
Cleavage Good {100}
Fracture Uneven to subconchoidal
Tenacity Somewhat brittle
Mohs scale hardness6+12 - 7
Luster Vitreous
Streak White
Diaphaneity Transparent or translucent
Specific gravity 4.97
References [1] [2]

Axinite-(Mg) is a borosilicate mineral of aluminum, calcium and magnesium of the axinite group, with magnesium as the dominant cation in the place of the structure that can also be occupied by iron and manganese. It was discovered in gem material from Merelani Hills, Lelatema Mts, Manyara Region, Tanzania, which is consequently its type locality. [3] It was initially called magnesioaxinite, referring to its membership in the axinite group and the role of magnesium as the dominant cation. The International Mineralogical Association (IMA) later changed its name to axinite-(Mg). [4] Occasionally it has been carved as a collection gem.

Contents

Physical and chemical properties

Like the rest of the minerals in the axinite group, axinite-(Mg) belongs to the triclinic system, appearing in the form of crystals with the characteristic ax-shaped morphology. Its structure can be described as a sequence of alternating layers of cations coordinated tetrahedrally and octahedrally. [5]

Deposits

The axinite group minerals are found in medium-to-low contact metamorphism, regional or metasomatic environments, in boron-containing environments. Axinite-(Mg) appears more frequently in areas of contact metamorphism.

It is a relatively rare mineral, known in about a dozen locations in the world. In addition to the type locality, already indicated, in which specimens with transparent crystals of various colors, up to 3 cm in size, have been found in the area of Lunning, Mineral Co., Nevada (USA), as violet brown crystals. [6] In Spain, axinite-(Mg) associated with crystalline calcite has been found in the diabase of a quarry located in El Zurcido, Adamuz (Córdoba) . [7]

Related Research Articles

Kyanite Aluminosilicate mineral

Kyanite is a typically blue aluminosilicate mineral, found in aluminium-rich metamorphic pegmatites and sedimentary rock. It is the high pressure polymorph of andalusite and sillimanite, and the presence of kyanite in metamorphic rocks generally indicates metamorphism deep in the Earth's crust. Kyanite is also known as disthene or cyanite.

Mineral Element or chemical compound that is normally crystalline formed as a result of geological processes

In geology and mineralogy, a mineral or mineral species is, broadly speaking, a solid chemical compound with a fairly well-defined chemical composition and a specific crystal structure that occurs naturally in pure form.

Tourmaline Cyclosilicate mineral group

Tourmaline is a crystalline boron silicate mineral compounded with elements such as aluminium, iron, magnesium, sodium, lithium, or potassium. This gemstone can be found in a wide variety of colors.

Amphibole Group of inosilicate minerals

Amphibole is a group of inosilicate minerals, forming prism or needlelike crystals, composed of double chain SiO
4
tetrahedra, linked at the vertices and generally containing ions of iron and/or magnesium in their structures. Its IMA symbol is Amp. Amphiboles can be green, black, colorless, white, yellow, blue, or brown. The International Mineralogical Association currently classifies amphiboles as a mineral supergroup, within which are two groups and several subgroups.

Actinolite

Actinolite is an amphibole silicate mineral with the chemical formula Ca2(Mg4.5-2.5Fe2+0.5-2.5)Si8O22(OH)2.

Axinite

Axinite is a brown to violet-brown, or reddish-brown bladed group of minerals composed of calcium aluminium boro-silicate, (Ca,Fe,Mn)3Al2BO3Si4O12OH. Axinite is pyroelectric and piezoelectric.

Forsterite Magnesium end-member of olivine, a nesosilicate mineral

Forsterite (Mg2SiO4; commonly abbreviated as Fo; also known as white olivine) is the magnesium-rich end-member of the olivine solid solution series. It is isomorphous with the iron-rich end-member, fayalite. Forsterite crystallizes in the orthorhombic system (space group Pbnm) with cell parameters a 4.75 Å (0.475 nm), b 10.20 Å (1.020 nm) and c 5.98 Å (0.598 nm).

Cordierite

Cordierite (mineralogy) or iolite (gemology) is a magnesium iron aluminium cyclosilicate. Iron is almost always present and a solid solution exists between Mg-rich cordierite and Fe-rich sekaninaite with a series formula: (Mg,Fe)2Al3(Si5AlO18) to (Fe,Mg)2Al3(Si5AlO18). A high-temperature polymorph exists, indialite, which is isostructural with beryl and has a random distribution of Al in the (Si,Al)6O18 rings.

Silicate mineral Rock-forming minerals with predominantly silicate anions

Silicate minerals are rock-forming minerals made up of silicate groups. They are the largest and most important class of minerals and make up approximately 90 percent of Earth's crust.

Cummingtonite Mineral discovered and named after its place of discovery, Cummington, Massachusetts

Cummingtonite is a metamorphic amphibole with the chemical composition (Mg,Fe2+
)
2
(Mg,Fe2+
)
5
Si
8
O
22
(OH)
2
, magnesium iron silicate hydroxide.

Illite Group of related non-expanding clay minerals

Illite is a group of closely related non-expanding clay minerals. Illite is a secondary mineral precipitate, and an example of a phyllosilicate, or layered alumino-silicate. Its structure is a 2:1 sandwich of silica tetrahedron (T) – alumina octahedron (O) – silica tetrahedron (T) layers. The space between this T-O-T sequence of layers is occupied by poorly hydrated potassium cations which are responsible for the absence of swelling. Structurally, illite is quite similar to muscovite with slightly more silicon, magnesium, iron, and water and slightly less tetrahedral aluminium and interlayer potassium. The chemical formula is given as (K,H3O)(Al,Mg,Fe)2(Si,Al)4O10[(OH)2·(H2O)], but there is considerable ion (isomorphic) substitution. It occurs as aggregates of small monoclinic grey to white crystals. Due to the small size, positive identification usually requires x-ray diffraction or SEM-EDS analysis. Illite occurs as an altered product of muscovite and feldspar in weathering and hydrothermal environments; it may be a component of sericite. It is common in sediments, soils, and argillaceous sedimentary rocks as well as in some low grade metamorphic rocks. The iron-rich member of the illite group, glauconite, in sediments can be differentiated by x-ray analysis.

Lazulite

Lazulite ((Mg,Fe2+)Al2(PO4)2(OH)2) is a blue, phosphate mineral containing magnesium, iron, and aluminium phosphate. Lazulite forms one endmember of a solid solution series with the darker iron rich scorzalite.

Åkermanite

Åkermanite (Ca2Mg[Si2O7]) is a melilite mineral of the sorosilicate group, containing calcium, magnesium, silicon, and oxygen. It is a product of contact metamorphism of siliceous limestones and dolomites, and rocks of sanidinite facies. Sanidinite facies represent the highest conditions of temperature of contact metamorphism and are characterized by the absence of hydrous minerals. It has a density of 2.944 g/cm3. Åkermanite ranks a 5 or 6 on the Mohs scale of mineral hardness, and can be found gray, green, brown, or colorless. It has a white streak and a vitreous or resinous luster. It has a tetragonal crystal system and a good, or distinct, cleavage. It is the end member in a solid solution series beginning with gehlenite (Ca2Al[AlSiO7]).

Julgoldite

Julgoldite is a member of the pumpellyite mineral series, a series of minerals characterized by the chemical bonding of silica tetrahedra with alkali and transition metal cations. Julgoldites, along with more common minerals like epidote and vesuvianite, belong to the subclass of sorosilicates, the rock-forming minerals that contain SiO4 tetrahedra that share a common oxygen to form Si2O7 ions with a charge of 6- (Deer et al., 1996). Julgoldite has been recognized for its importance in low grade metamorphism, forming under shear stress accompanied by relatively low temperatures (Coombs, 1953). Julgoldite was named in honor of Professor Julian Royce Goldsmith (1918–1999) of the University of Chicago.

Magnesiohastingsite

Magnesiohastingsite is a calcium-containing amphibole and a member of the hornblende group. It is an inosilicate (chain silicate) with the formula NaCa2(Mg4Fe3+)(Si6Al2)O22(OH)2 and molar mass 864.69 g. In synthetic magnesiohastingsite it appears that iron occurs both as ferrous iron Fe2+ and as ferric iron Fe3+, but the ideal formula features only ferric iron. It was named in 1928 by Marland P. Billings. The name is for its relationship to hastingsite and its magnesium content. Hastingsite was named for the locality in Dungannon Township, Hastings County, Ontario, Canada.

Magnesiopascoite is a bright orange mineral with formula Ca2Mg(V10O28)·16H2O. It was discovered in the U.S. state of Utah and formally described in 2008. The mineral's name derives from its status as the magnesium analogue of pascoite.

Ferrogedrite Amphibole, double chain inosilicate mineral

Ferrogedrite is an amphibole mineral with the complex chemical formula of ☐Fe2+2(Fe2+3Al2)(Si6Al2)O22(OH)2. It is sodium and calcium poor, making it part of the magnesium-iron-manganese-lithium amphibole subgroup. Defined as less than 1.00 apfu (atoms per formula unit) of Na + Ca and consisting of greater than 1.00 apfu of (Mg, Fe2+, Mn2+, Li) separating it from the calcic-sodic amphiboles. It is related to anthophyllite amphibole and gedrite through coupled substitution of (Al, Fe3+) for (Mg, Fe2+, Mn) and Al for Si. and determined by the content of silicon in the standard cell.

Cattiite is a phosphate mineral. The mineral was first found in a veins of dolomite carbonatites veins at the bottom of the Zhelezny (Iron) Mine in the Kovdor massif, Kola Peninsula, Russia. Cattiite was tentatively identified as Mg3(PO4)2•22H2O, which as a high hydrate magnesium orthophosphate. Later structural studies, revealed the existence of two polytypes named Mg3(PO4)2•22H2O-1A1 and Mg3(PO4)2•22H2O-1A2.

Antigorite Monoclinic mineral

Antigorite is a lamellated, monoclinic mineral in the phylosilicate serpentine subgroup with the ideal chemical formula of (Mg,Fe2+)3Si2O5(OH)4. It is the high-pressure polymorph of serpentine and is commonly found in metamorphosed serpentinites. Antigorite, and its serpentine polymorphs, play an important role in subduction zone dynamics due to their relative weakness and high weight percent of water (up to 13 weight % H2O). It is named after its type locality, the Geisspfad serpentinite, Valle Antigorio in the border region of Italy/Switzerland and is commonly used as a gemstone in jewelry and carvings.

Miguelromeroite Pale pink mineral - synthetic compound

Miguelromeroite is a mineral named for Miguel Romero Sanchez by Anthony Robert Kampf. The mineral, first described in 2008 was named in 2009, the same year it got approved by the International Mineralogical Association.

References

  1. Handbook of Mineralogy
  2. "Axinite-(Mg): Axinite-(Mg) mineral information and data". Mindat.org. 2019-08-05. Retrieved 2019-08-05.
  3. Jobbins, E.A., Tresham, A.E. y Young, B. (1975). "Magnesioaxinite, a new mineral found as a blue gemstone from Tanzania". Journal of Gemmology. 14 (8): 368–375. doi:10.15506/JoG.1975.14.8.368.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  4. Burke, Arnest A.J. (2008). "Tidying up mineral namesː an IMA-CNMCN scheme for suffixes, hyphens and diacritical marks". The Mineralogical Record. 39: 131–135.
  5. Takéuchi, Y., Ozawa, Y., Ito, T., Araki, T., Zoltai, T. y Finney, J.J. (1974). "The B2Si8O30 groups of tetrahedra in axinite and comments on deformation of Si tetrahedra in silicates". Zeitschrift für Kristallographie. 140 (5–6): 289–312. Bibcode:1974ZK....140..289T. doi:10.1524/zkri.1974.140.5-6.289.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  6. Jobbins, E.A., Tresham, A.E. y Young, B.R (1980). "Magnesioaxinite from Lunning, Nevada, and some nomenclature designations for the axinite group". The Mineralogical Record. 11: 13–15.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  7. Calvo, Miguel (2018). Minerales y Minas de España. Vol. IX. Silicatos. Madrid, Spain: Escuela Técnica Superior de Ingenieros de Minas de Madrid. Fundación Gómez Pardo. p. 175. ISBN   978-84-8321-883-9.