BATES

Last updated

BATES is an acronym for BAllistic Test and Evaluation System, which is a standardized system for measuring solid rocket propellant performance designed and developed by the United States Air Force Research Laboratory in 1959 through the early 1960s, [1] used for almost forty years thereafter, and again beginning in 2010. [2] Then through 2016. According to this reference, a single propellant grain weighing 68 to 70 pounds was used in the original AFRL BATES motor design. An AFRL BATES propellant grain is inhibited, usually by a flame resistant cartridge case, on the OD, burning only on the two outer ends and the central bore, and is dimensioned so the burning area does not change significantly (< 3% in the original BATES motor) through the burn, generating a flat-topped thrust curve (neutral burn) to minimize propellant characterization costs and simplify the data analysis.

The first official description of the BATES system was published by and available from the Defense Technical Information Center (DTIC): “Development and Evaluation of the USAF Ballistic Test Evaluation System for Solid Rocket Propellants”. [3]

An official press release in 1964 included BATES information. [4]

In 2016 the AIR FORCE published through DTIC an overview the included a summary of BATES use. [5]

In modern usage, BATES often refers to a type of solid-fuel rocket motor grain geometry. A BATES grain consists of one or more cylindrical grain segments with the outer surface inhibited, but free to burn both on the segment ends and the cylindrical core. Such grains are very easy to cast, while allowing for the user to configure a progressive, regressive, or neutral thrust curve by changing various dimensions. [6] The neutral BATES length is calculated by the equation , where is the length of the grain, is the outer diameter of the grain, and is the diameter of the core of the grain. [7]

Related Research Articles

<span class="mw-page-title-main">Missile</span> Self-propelled guided weapon system

A missile is an airborne ranged weapon capable of self-propelled flight aided usually by a propellant, jet engine or rocket motor.

<span class="mw-page-title-main">Rocket</span> Vehicle propelled by a reaction gas engine

A rocket is a vehicle that uses jet propulsion to accelerate without using the surrounding air. A rocket engine produces thrust by reaction to exhaust expelled at high speed. Rocket engines work entirely from propellant carried within the vehicle; therefore a rocket can fly in the vacuum of space. Rockets work more efficiently in a vacuum and incur a loss of thrust due to the opposing pressure of the atmosphere.

<span class="mw-page-title-main">Solid-propellant rocket</span> Rocket with a motor that uses solid propellants

A solid-propellant rocket or solid rocket is a rocket with a rocket engine that uses solid propellants (fuel/oxidizer). The earliest rockets were solid-fuel rockets powered by gunpowder; The inception of gunpowder rockets in warfare can be credited to ancient Chinese ingenuity, and in the 13th century, the Mongols played a pivotal role in facilitating their westward adoption.

<span class="mw-page-title-main">Hybrid-propellant rocket</span> Rocket engine that uses both liquid / gaseous and solid fuel

A hybrid-propellant rocket is a rocket with a rocket motor that uses rocket propellants in two different phases: one solid and the other either gas or liquid. The hybrid rocket concept can be traced back to the early 1930s.

The SM-65 Atlas was the first operational intercontinental ballistic missile (ICBM) developed by the United States and the first member of the Atlas rocket family. It was built for the U.S. Air Force by the Convair Division of General Dynamics at an assembly plant located in Kearny Mesa, San Diego.

<span class="mw-page-title-main">Model rocket</span> Small recreational rocket

A model rocket is a small rocket designed to reach low altitudes and be recovered by a variety of means.

<span class="mw-page-title-main">Rocket engine</span> Non-air breathing jet engine used to propel a missile or vehicle

A rocket engine uses stored rocket propellants as the reaction mass for forming a high-speed propulsive jet of fluid, usually high-temperature gas. Rocket engines are reaction engines, producing thrust by ejecting mass rearward, in accordance with Newton's third law. Most rocket engines use the combustion of reactive chemicals to supply the necessary energy, but non-combusting forms such as cold gas thrusters and nuclear thermal rockets also exist. Vehicles propelled by rocket engines are commonly used by ballistic missiles and rockets. Rocket vehicles carry their own oxidiser, unlike most combustion engines, so rocket engines can be used in a vacuum to propel spacecraft and ballistic missiles.

DRDC Valcartier is a major Canadian military research station at Canadian Forces Base Valcartier, Quebec, one of nine centres making up Defence Research and Development Canada (DRDC).

<span class="mw-page-title-main">Liquid-propellant rocket</span> Rocket engine that uses liquid fuels and oxidizers

A liquid-propellant rocket or liquid rocket utilizes a rocket engine burning liquid propellants. (Alternate approaches use gaseous or solid propellants.) Liquids are desirable propellants because they have reasonably high density and their combustion products have high specific impulse (Isp). This allows the volume of the propellant tanks to be relatively low.

<span class="mw-page-title-main">Titan IV</span> Expendable launch system used by the US Air Force

Titan IV was a family of heavy-lift space launch vehicles developed by Martin Marietta and operated by the United States Air Force from 1989 to 2005. Launches were conducted from Cape Canaveral Air Force Station, Florida and Vandenberg Air Force Base, California.

Motors for model rockets and high-powered rockets are classified by total impulse into a set of letter-designated ranges, from ⅛A up to O. The total impulse is the integral of the thrust over burn time.

<span class="mw-page-title-main">Tactical ballistic missile</span> Ballistic missile designed for short-range use on the battlefield

A tactical ballistic missile (TBM), or battlefield range ballistic missile (BRBM), is a ballistic missile designed for short-range battlefield use. Typically, range is less than 300 kilometres (190 mi). Tactical ballistic missiles are usually mobile to ensure survivability and quick deployment, as well as carrying a variety of warheads to target enemy facilities, assembly areas, artillery, and other targets behind the front lines. Warheads can include conventional high explosive, chemical, biological, or nuclear warheads. Typically tactical nuclear weapons are limited in their total yield compared to strategic nuclear weapons.

Amateur rocketry, sometimes known as experimental rocketry or amateur experimental rocketry, is a hobby in which participants experiment with fuels and make their own rocket motors, launching a wide variety of types and sizes of rockets. Amateur rocketeers have been responsible for significant research into hybrid rocket motors, and have built and flown a variety of solid, liquid, and hybrid propellant motors.

Rocket candy, or R-Candy, is a type of rocket propellant for model rockets made with a form of sugar as a fuel, and containing an oxidizer. The propellant can be divided into three groups of components: the fuel, the oxidizer, and the (optional) additive(s). In the past, sucrose was most commonly used as fuel. Modern formulations most commonly use sorbitol for its ease of production. The most common oxidizer is potassium nitrate (KNO3). Potassium nitrate is most commonly found in tree stump remover. Additives can be many different substances, and either act as catalysts or enhance the aesthetics of the liftoff or flight. A traditional sugar propellant formulation is typically prepared in a 65:35 (13:7) oxidizer to fuel ratio.

<span class="mw-page-title-main">Rocket engine nozzle</span> Type of propelling nozzle

A rocket engine nozzle is a propelling nozzle used in a rocket engine to expand and accelerate combustion products to high supersonic velocities.

Ammonium perchlorate composite propellant (APCP) is a solid-propellant rocket fuel. It differs from many traditional solid rocket propellants such as black powder or zinc-sulfur, not only in chemical composition and overall performance but also by being cast into shape, as opposed to powder pressing as with black powder. This provides manufacturing regularity and repeatability, which are necessary requirements for use in the aerospace industry.

<span class="mw-page-title-main">Rocket propellant</span> Chemical or mixture used as fuel for a rocket engine

Rocket propellant is the reaction mass of a rocket. This reaction mass is ejected at the highest achievable velocity from a rocket engine to produce thrust. The energy required can either come from the propellants themselves, as with a chemical rocket, or from an external source, as with ion engines.

<span class="mw-page-title-main">RTV-A-3 NATIV</span> Missile

The RTV-A-3 NATIV was an experimental missile developed by North American Aviation for the United States Air Force in the late 1940s to test and evaluate guided missile technologies. The North American Test Instrumentation Vehicle (NATIV) was developed as part of the MX-770 program which was created towards the end of WWII with the intent of developing a long range missile.

<span class="mw-page-title-main">Skokie (rocket)</span>

Skokie was a family of research vehicles developed by the Cook Electric Co. for the United States Air Force during the mid to late 1950s. Launched from a B-29 bomber, Skokie 1 was an unpowered, ballistic vehicle, while Skokie 2 was rocket-propelled; both were used for evaluating and testing high-speed parachute recovery systems.

Hybrid rocket fuel regression refers to the process by which the fuel grain of a hybrid-propellant rocket is converted from a solid to a gas that is combusted. It encompasses the regression rate, the distance that the fuel surface recedes over a given time, as well as the burn area, the surface area that is being eroded at a given moment.

References

  1. Geisler, R.; Beckman, C. "The History of the BATES Motors at the Air Force Rocket Propulsion Laboratory" (PDF). AIR FORCE RESEARCH LAB EDWARDS AFB CA PROPULSION DIRECTORATE WEST (1998). Archived from the original on October 9, 2012. Retrieved 16 September 2011.
  2. Thuloweit, Kenji. "AFRL test marks return to 'in-house' rocket fuel development". Press Release. US Air Force. Archived from the original on 18 December 2011. Retrieved 16 September 2011.
  3. Gale, Harold W. (April 1962). Development and Evaluation of the USAF Ballistic Test Evaluation System for Solid Rocket Propellants Accession Number : AD0276424: Technical documentary report : TEST GROUP (DEVELOPMENT) (6593RD) EDWARDS AFB CA (PDF) (Report). Archived from the original (PDF) on February 1, 2017. Abstract: A reproducible, accurate, ballistic evaluation system for solid propellants was developed. Particular attention centered on an accuracy level of 0.5 percent or better on specific impulse (Isp). Evaluation of new propellants by their manufacturers had resulted in a multiplicity of definitions and mathematical correction factors which obscure actual performance results and complicate qualitative comparison of competitive propellants. An industry survey determined desirable standard motor system parameters and prevailing practices. From industry, best practice such as 1,000 psi combustion pressure and 15 degree nozzle exit half-angle expanded to local ambient pressure, were adopted in the motor and system design as far as possible. Other system parameters were selected by the assigned design engineer/manager; 2Lt H. Gale. Eight months after assignment, first firing was in September, 1961. Twelve firings of two propellants were made for motor and system evaluation. All objectives were successfully achieved or exceeded. Calibration firings established the confidence level and accuracy of the system prior to evaluation of industry propellants.
  4. "- YouTube". YouTube .
  5. "Article title" (PDF). Archived from the original (PDF) on 2023-05-11. Retrieved 2022-06-02.
  6. Nakka, Richard. "RNX Composite Propellant". Richard Experimental Rocketry. Retrieved 16 September 2011.
  7. Nakka, Richard. "Rocket motor design charts". Richard Experimental Rocketry. Retrieved 30 January 2023.