BEST theorem

Last updated

In graph theory, a part of discrete mathematics, the BEST theorem gives a product formula for the number of Eulerian circuits in directed (oriented) graphs. The name is an acronym of the names of people who discovered it: de Bruijn, van Aardenne-Ehrenfest, Smith and Tutte.

Contents

Precise statement

Let G = (V, E) be a directed graph. An Eulerian circuit is a directed closed path which visits each edge exactly once. In 1736, Euler showed that G has an Eulerian circuit if and only if G is connected and the indegree is equal to outdegree at every vertex. In this case G is called Eulerian. We denote the indegree of a vertex v by deg(v).

The BEST theorem states that the number ec(G) of Eulerian circuits in a connected Eulerian graph G is given by the formula

Here tw(G) is the number of arborescences, which are trees directed towards the root at a fixed vertex w in G. The number tw(G) can be computed as a determinant, by the version of the matrix tree theorem for directed graphs. It is a property of Eulerian graphs that tv(G) = tw(G) for every two vertices v and w in a connected Eulerian graph G.

Applications

The BEST theorem shows that the number of Eulerian circuits in directed graphs can be computed in polynomial time, a problem which is #P-complete for undirected graphs. [1] It is also used in the asymptotic enumeration of Eulerian circuits of complete and complete bipartite graphs. [2] [3]

History

The BEST theorem is due to van Aardenne-Ehrenfest and de Bruijn (1951), [4] §6, Theorem 6. Their proof is bijective and generalizes the de Bruijn sequences. In a "note added in proof", they refer to an earlier result by Smith and Tutte (1941) which proves the formula for graphs with deg(v)=2 at every vertex.

Notes

  1. Brightwell and Winkler, "Note on Counting Eulerian Circuits", CDAM Research Report LSE-CDAM-2004-12, 2004.
  2. Brendan McKay and Robert W. Robinson, Asymptotic enumeration of eulerian circuits in the complete graph, Combinatorica , 10 (1995), no. 4, 367–377.
  3. M.I. Isaev, Asymptotic number of Eulerian circuits in complete bipartite graphs Archived 2010-04-15 at the Wayback Machine (in Russian), Proc. 52-nd MFTI Conference (2009), Moscow.
  4. van Aardenne-Ehrenfest, T.; de Bruijn, N. G. (1951). "Circuits and trees in oriented linear graphs". Simon Stevin . 28: 203–217.

Related Research Articles

In graph theory, a planar graph is a graph that can be embedded in the plane, i.e., it can be drawn on the plane in such a way that its edges intersect only at their endpoints. In other words, it can be drawn in such a way that no edges cross each other. Such a drawing is called a plane graph or planar embedding of the graph. A plane graph can be defined as a planar graph with a mapping from every node to a point on a plane, and from every edge to a plane curve on that plane, such that the extreme points of each curve are the points mapped from its end nodes, and all curves are disjoint except on their extreme points.

<span class="mw-page-title-main">Tree (graph theory)</span> Undirected, connected and acyclic graph

In graph theory, a tree is an undirected graph in which any two vertices are connected by exactly one path, or equivalently a connected acyclic undirected graph. A forest is an undirected graph in which any two vertices are connected by at most one path, or equivalently an acyclic undirected graph, or equivalently a disjoint union of trees.

In the mathematical field of graph theory the Hamiltonian path problem and the Hamiltonian cycle problem are problems of determining whether a Hamiltonian path or a Hamiltonian cycle exists in a given graph. Both problems are NP-complete.

<span class="mw-page-title-main">Bipartite graph</span> Graph divided into two independent sets

In the mathematical field of graph theory, a bipartite graph is a graph whose vertices can be divided into two disjoint and independent sets and , that is every edge connects a vertex in to one in . Vertex sets and are usually called the parts of the graph. Equivalently, a bipartite graph is a graph that does not contain any odd-length cycles.

<span class="mw-page-title-main">Hamiltonian path</span> Path in a graph that visits each vertex exactly once

In the mathematical field of graph theory, a Hamiltonian path is a path in an undirected or directed graph that visits each vertex exactly once. A Hamiltonian cycle is a cycle that visits each vertex exactly once. A Hamiltonian path that starts and ends at adjacent vertices can be completed by adding one more edge to form a Hamiltonian cycle, and removing any edge from a Hamiltonian cycle produces a Hamiltonian path. Determining whether such paths and cycles exist in graphs are NP-complete.

This is a glossary of graph theory. Graph theory is the study of graphs, systems of nodes or vertices connected in pairs by lines or edges.

<span class="mw-page-title-main">Eulerian path</span> Trail in a graph that visits each edge once

In graph theory, an Eulerian trail is a trail in a finite graph that visits every edge exactly once. Similarly, an Eulerian circuit or Eulerian cycle is an Eulerian trail that starts and ends on the same vertex. They were first discussed by Leonhard Euler while solving the famous Seven Bridges of Königsberg problem in 1736. The problem can be stated mathematically like this:

In the mathematical discipline of graph theory, the line graph of an undirected graph G is another graph L(G) that represents the adjacencies between edges of G. L(G) is constructed in the following way: for each edge in G, make a vertex in L(G); for every two edges in G that have a vertex in common, make an edge between their corresponding vertices in L(G).

In the mathematical theory of matroids, a graphic matroid is a matroid whose independent sets are the forests in a given finite undirected graph. The dual matroids of graphic matroids are called co-graphic matroids or bond matroids. A matroid that is both graphic and co-graphic is sometimes called a planar matroid ; these are exactly the graphic matroids formed from planar graphs.

<span class="mw-page-title-main">Degree (graph theory)</span> Number of edges touching a vertex in a graph

In graph theory, the degree of a vertex of a graph is the number of edges that are incident to the vertex; in a multigraph, a loop contributes 2 to a vertex's degree, for the two ends of the edge. The degree of a vertex is denoted or . The maximum degree of a graph , denoted by , and the minimum degree of a graph, denoted by , are the maximum and minimum of its vertices' degrees. In the multigraph shown on the right, the maximum degree is 5 and the minimum degree is 0.

<span class="mw-page-title-main">Dual graph</span> Graph representing faces of another graph

In the mathematical discipline of graph theory, the dual graph of a plane graph G is a graph that has a vertex for each face of G. The dual graph has an edge for each pair of faces in G that are separated from each other by an edge, and a self-loop when the same face appears on both sides of an edge. Thus, each edge e of G has a corresponding dual edge, whose endpoints are the dual vertices corresponding to the faces on either side of e. The definition of the dual depends on the choice of embedding of the graph G, so it is a property of plane graphs rather than planar graphs. For planar graphs generally, there may be multiple dual graphs, depending on the choice of planar embedding of the graph.

<span class="mw-page-title-main">Ore's theorem</span>

Ore's theorem is a result in graph theory proved in 1960 by Norwegian mathematician Øystein Ore. It gives a sufficient condition for a graph to be Hamiltonian, essentially stating that a graph with sufficiently many edges must contain a Hamilton cycle. Specifically, the theorem considers the sum of the degrees of pairs of non-adjacent vertices: if every such pair has a sum that at least equals the total number of vertices in the graph, then the graph is Hamiltonian.

<span class="mw-page-title-main">Tatyana Pavlovna Ehrenfest</span> Dutch mathematician

Tatyana Pavlovna Ehrenfest, later van Aardenne-Ehrenfest, was a Dutch mathematician. She was the daughter of Paul Ehrenfest (1880–1933) and Tatyana Alexeyevna Afanasyeva (1876–1964).

<span class="mw-page-title-main">Handshaking lemma</span> Every graph has evenly many odd vertices

In graph theory, a branch of mathematics, the handshaking lemma is the statement that, in every finite undirected graph, the number of vertices that touch an odd number of edges is even. In more colloquial terms, in a party of people some of whom shake hands, the number of people who shake an odd number of other people's hands is even. The handshaking lemma is a consequence of the degree sum formula, also sometimes called the handshaking lemma, according to which the sum of the degrees equals twice the number of edges in the graph. Both results were proven by Leonhard Euler (1736) in his famous paper on the Seven Bridges of Königsberg that began the study of graph theory.

In graph theory, a strong orientation of an undirected graph is an assignment of a direction to each edge that makes it into a strongly connected graph.

<span class="mw-page-title-main">Directed graph</span> Graph with oriented edges

In mathematics, and more specifically in graph theory, a directed graph is a graph that is made up of a set of vertices connected by directed edges, often called arcs.

In matroid theory, a binary matroid is a matroid that can be represented over the finite field GF(2). That is, up to isomorphism, they are the matroids whose elements are the columns of a (0,1)-matrix and whose sets of elements are independent if and only if the corresponding columns are linearly independent in GF(2).

In matroid theory, an Eulerian matroid is a matroid whose elements can be partitioned into a collection of disjoint circuits.

In the mathematical discipline of graph theory, the 2-factor theorem, discovered by Julius Petersen, is one of the earliest works in graph theory. It can be stated as follows:

References