Bayesian cognitive science

Last updated

Bayesian cognitive science, also known as computational cognitive science, is an approach to cognitive science concerned with the rational analysis [1] of cognition through the use of Bayesian inference and cognitive modeling. The term "computational" refers to the computational level of analysis as put forth by David Marr. [2]

Contents

This work often consists of testing the hypothesis that cognitive systems behave like rational Bayesian agents in particular types of tasks. Past work has applied this idea to categorization, language, motor control, sequence learning, reinforcement learning and theory of mind.

At other times,[ clarification needed ] Bayesian rationality is assumed, and the goal is to infer the knowledge that agents have, and the mental representations that they use.

It is important to contrast this with the ordinary use of Bayesian inference in cognitive science, which is independent of rational modeling (see e.g. Michael Lee's work).

See also

Related Research Articles

<span class="mw-page-title-main">Cognitive science</span> Interdisciplinary scientific study of cognitive processes

Cognitive science is the interdisciplinary, scientific study of the mind and its processes with input from linguistics, psychology, neuroscience, philosophy, computer science/artificial intelligence, and anthropology. It examines the nature, the tasks, and the functions of cognition. Cognitive scientists study intelligence and behavior, with a focus on how nervous systems represent, process, and transform information. Mental faculties of concern to cognitive scientists include language, perception, memory, attention, reasoning, and emotion; to understand these faculties, cognitive scientists borrow from fields such as linguistics, psychology, artificial intelligence, philosophy, neuroscience, and anthropology. The typical analysis of cognitive science spans many levels of organization, from learning and decision to logic and planning; from neural circuitry to modular brain organization. One of the fundamental concepts of cognitive science is that "thinking can best be understood in terms of representational structures in the mind and computational procedures that operate on those structures."

A cognitive model is an approximation of one or more cognitive processes in humans or other animals for the purposes of comprehension and prediction. There are many types of cognitive models, and they can range from box-and-arrow diagrams to a set of equations to software programs that interact with the same tools that humans use to complete tasks. In terms of information processing, cognitive modeling is modeling of human perception, reasoning, memory and action.

<span class="mw-page-title-main">ACT-R</span>

ACT-R is a cognitive architecture mainly developed by John Robert Anderson and Christian Lebiere at Carnegie Mellon University. Like any cognitive architecture, ACT-R aims to define the basic and irreducible cognitive and perceptual operations that enable the human mind. In theory, each task that humans can perform should consist of a series of these discrete operations.

Distributed cognition is an approach to cognitive science research that was developed by cognitive anthropologist Edwin Hutchins during the 1990s.

Computational economics is an interdisciplinary research discipline that involves computer science, economics, and management science. This subject encompasses computational modeling of economic systems. Some of these areas are unique, while others established areas of economics by allowing robust data analytics and solutions of problems that would be arduous to research without computers and associated numerical methods.

A cognitive architecture refers to both a theory about the structure of the human mind and to a computational instantiation of such a theory used in the fields of artificial intelligence (AI) and computational cognitive science. The formalized models can be used to further refine a comprehensive theory of cognition and as a useful artificial intelligence program. Successful cognitive architectures include ACT-R and SOAR. The research on cognitive architectures as software instantiation of cognitive theories was initiated by Allen Newell in 1990.

Mathematical psychology is an approach to psychological research that is based on mathematical modeling of perceptual, thought, cognitive and motor processes, and on the establishment of law-like rules that relate quantifiable stimulus characteristics with quantifiable behavior. The mathematical approach is used with the goal of deriving hypotheses that are more exact and thus yield stricter empirical validations. There are five major research areas in mathematical psychology: learning and memory, perception and psychophysics, choice and decision-making, language and thinking, and measurement and scaling.

<span class="mw-page-title-main">Sally–Anne test</span> Psychological test

The Sally–Anne test is a psychological test, used in developmental psychology to measure a person's social cognitive ability to attribute false beliefs to others. The flagship implementation of the Sally–Anne test was by Simon Baron-Cohen, Alan M. Leslie, and Uta Frith (1985); in 1988, Leslie and Frith repeated the experiment with human actors and found similar results.

Neurophilosophy or philosophy of neuroscience is the interdisciplinary study of neuroscience and philosophy that explores the relevance of neuroscientific studies to the arguments traditionally categorized as philosophy of mind. The philosophy of neuroscience attempts to clarify neuroscientific methods and results using the conceptual rigor and methods of philosophy of science.

Formal epistemology uses formal methods from decision theory, logic, probability theory and computability theory to model and reason about issues of epistemological interest. Work in this area spans several academic fields, including philosophy, computer science, economics, and statistics. The focus of formal epistemology has tended to differ somewhat from that of traditional epistemology, with topics like uncertainty, induction, and belief revision garnering more attention than the analysis of knowledge, skepticism, and issues with justification.

Concept learning, also known as category learning, concept attainment, and concept formation, is defined by Bruner, Goodnow, & Austin (1967) as "the search for and listing of attributes that can be used to distinguish exemplars from non exemplars of various categories". More simply put, concepts are the mental categories that help us classify objects, events, or ideas, building on the understanding that each object, event, or idea has a set of common relevant features. Thus, concept learning is a strategy which requires a learner to compare and contrast groups or categories that contain concept-relevant features with groups or categories that do not contain concept-relevant features.

Ron Sun is a cognitive scientist who made significant contributions to computational psychology and other areas of cognitive science and artificial intelligence. He is currently professor of cognitive sciences at Rensselaer Polytechnic Institute, and formerly the James C. Dowell Professor of Engineering and Professor of Computer Science at University of Missouri. He received his Ph.D. in 1992 from Brandeis University.

Bayesian approaches to brain function investigate the capacity of the nervous system to operate in situations of uncertainty in a fashion that is close to the optimal prescribed by Bayesian statistics. This term is used in behavioural sciences and neuroscience and studies associated with this term often strive to explain the brain's cognitive abilities based on statistical principles. It is frequently assumed that the nervous system maintains internal probabilistic models that are updated by neural processing of sensory information using methods approximating those of Bayesian probability.

Michael C. Frank is a developmental psychologist at Stanford University who proposed that infants' language development may be thought of as a process of Bayesian inference. He has also studied the role of language in numerical cognition by comparing the performance of native Pirahã language speakers to that of MIT undergraduate students in numeric tasks. For this work, he traveled to Amazonas, Brazil with Daniel Everett, a linguist best known for his claim that Pirahã disproves a crucial component of Noam Chomsky's theory of universal grammar, recursion. Frank won the Cognitive Science Society's prestigious Marr Award for this work in 2008.

The Troland Research Awards are an annual prize given by the United States National Academy of Sciences to two researchers in recognition of psychological research on the relationship between consciousness and the physical world. The areas where these award funds are to be spent include but are not limited to areas of experimental psychology, the topics of sensation, perception, motivation, emotion, learning, memory, cognition, language, and action. The award preference is given to experimental work with a quantitative approach or experimental research seeking physiological explanations.

Rational analysis is a theoretical framework, methodology, and research program in cognitive science that has been developed by John Anderson. The goal of rational analysis as a research program is to explain the function and purpose of cognitive processes and to discover the structure of the mind. Chater and Oaksford contrast it with the mechanistic explanations of cognition offered by both computational models and neuroscience.

<span class="mw-page-title-main">Alan Yuille</span> English academic

Alan Yuille is a Bloomberg Distinguished Professor of Computational Cognitive Science with appointments in the departments of Cognitive Science and Computer Science at Johns Hopkins University. Yuille develops models of vision and cognition for computers, intended for creating artificial vision systems. He studied under Stephen Hawking at Cambridge University on a PhD in theoretical physics, which he completed in 1981.

Intuitive statistics, or folk statistics, is the cognitive phenomenon where organisms use data to make generalizations and predictions about the world. This can be a small amount of sample data or training instances, which in turn contribute to inductive inferences about either population-level properties, future data, or both. Inferences can involve revising hypotheses, or beliefs, in light of probabilistic data that inform and motivate future predictions. The informal tendency for cognitive animals to intuitively generate statistical inferences, when formalized with certain axioms of probability theory, constitutes statistics as an academic discipline.

<span class="mw-page-title-main">Fei Xu</span> American Professor of Psychology

Fei Xu is an American developmental psychologist and cognitive scientist who is currently a professor of psychology and the director of the Berkeley Early Learning Lab at UC Berkeley. Her research focuses on cognitive and language development, from infancy to middle childhood.

References

  1. Anderson, John (1990). The Adaptive Character of Thought. Lawrence Erlbaum Associates.
  2. Marr, David (1971). The Philosophy and the Approach (PDF).{{cite book}}: |work= ignored (help)

Further reading