Binocular summation

Last updated

Binocular summation refers to the improved visual performance of binocular vision compared to that of monocular vision. The most vital benefit of binocular vision is stereopsis or depth perception, however binocular summation does afford some subtle advantages as well. By combining the information received in each eye, binocular summation can improve visual acuity, contrast sensitivity, flicker perception, and brightness perception. [1] Though binocular summation generally enhances binocular vision, it can worsen binocular vision relative to monocular vision under certain conditions. Binocular summation decreases with age and when large interocular differences are present. [2]

Contents

Visual improvements

Some of the ways in which binocular summation improves binocular visual performance are

A practical measure of binocularity is the binocular summation ratio BSR, which is the ratio of binocular contrast sensitivity to the contrast sensitivity of the better eye. [3]

Models for binocular brightness

One might expect the inputs from each eye to simply add together, and that the perceived brightness with two eyes is twice that of a single eye. However, the perceived brightness with two eyes is only slightly higher compared to a single eye. If one eye sees a bright scene, the perceived brightness will actually decrease if the other eye is presented with a dim light. This counterintuitive phenomenon is known as Fechner's Paradox. Several different models have been proposed to explain how the inputs from each eye are combined.

The renowned physicist Erwin Schrödinger, known for his contributions to quantum theory, had a fascination for psychology and he explored topics related to color perception. Schrödinger (1926) [4] put forth an equation for binocular brightness and contrast combination where each monocular input is weighted by the ratio of the signal strength from that eye to the sum of the signal from both eyes. The inputs and are monocular brightness flux signals. This equation can be thought of as the sum of the lengths of two vectors. [5]

MacLeod (1972) [6] expanded upon Schrödinger's work by proposing the following formula for the signal strength of a neural signal in terms of internal noise , luminance difference across the contour , and threshold luminance difference .

Process

It is still uncertain exactly how this process is performed by the brain and remains an active area of research. The mechanism can be explained by some combination of probability summation, neural summation, and effects due to binocular-monocular differences in pupil size, accommodation, fixation, and rivalry. Probability summation comes from the principle that there is a greater chance of detecting a visual stimulus with two eyes than with one eye.

There are five possible results when the input stimuli are summed together. These are

Binocular Fusion

Both motor fusion and sensory fusion mechanisms are used to combine the two images into a single perceived image. Motor fusion describes the vergence eye movements that rotate the eyes about the vertical axis. Sensory fusion is the psychological process of the visual system that creates a single image perceived by the brain.

See also

Related Research Articles

<span class="mw-page-title-main">Binocular vision</span> Ability to perceive a single three-dimensional image of surroundings with two eyes

In biology, binocular vision is a type of vision in which an animal has two eyes capable of facing the same direction to perceive a single three-dimensional image of its surroundings. Binocular vision does not typically refer to vision where an animal has eyes on opposite sides of its head and shares no field of view between them, like in some animals.

<span class="mw-page-title-main">Depth perception</span> Visual ability to perceive the world in 3D

Depth perception is the ability to perceive distance to objects in the world using the visual system and visual perception. It is a major factor in perceiving the world in three dimensions. Depth perception happens primarily due to stereopsis and accommodation of the eye.

<span class="mw-page-title-main">Field of view</span> Extent of the observable world seen at any given moment

The field of view (FoV) is the extent of the observable world that is seen at any given moment. In the case of optical instruments or sensors it is a solid angle through which a detector is sensitive to electromagnetic radiation.

The flicker fusion threshold, critical flicker frequency (CFF) or flicker fusion rate, is a concept in the psychophysics of vision. It is defined as the frequency at which an intermittent light stimulus appears to be completely steady to the average human observer. A traditional term for flicker fusion is "persistence of vision", but this has also been used to describe positive afterimages or motion blur. Although flicker can be detected for many waveforms representing time-variant fluctuations of intensity, it is conventionally, and most easily, studied in terms of sinusoidal modulation of intensity.

<span class="mw-page-title-main">Amblyopia</span> Failure of the brain to process input from one eye

Amblyopia, also called lazy eye, is a disorder of sight in which the brain fails to fully process input from one eye and over time favors the other eye. It results in decreased vision in an eye that typically appears normal in other aspects. Amblyopia is the most common cause of decreased vision in a single eye among children and younger adults.

<span class="mw-page-title-main">Visual acuity</span> Clarity of vision

Visual acuity (VA) commonly refers to the clarity of vision, but technically rates a person's ability to recognize small details with precision. Visual acuity depends on optical and neural factors. Optical factors of the eye influence the sharpness of an image on its retina. Neural factors include the health and functioning of the retina, of the neural pathways to the brain, and of the interpretative faculty of the brain.

<span class="mw-page-title-main">Diplopia</span> Double vision

Diplopia is the simultaneous perception of two images of a single object that may be displaced horizontally or vertically in relation to each other. Also called double vision, it is a loss of visual focus under regular conditions, and is often voluntary. However, when occurring involuntarily, it results in impaired function of the extraocular muscles, where both eyes are still functional, but they cannot turn to target the desired object. Problems with these muscles may be due to mechanical problems, disorders of the neuromuscular junction, disorders of the cranial nerves that innervate the muscles, and occasionally disorders involving the supranuclear oculomotor pathways or ingestion of toxins.

<span class="mw-page-title-main">Binocular rivalry</span>

Binocular rivalry is a phenomenon of visual perception in which perception alternates between different images presented to each eye.

<span class="mw-page-title-main">Stroboscopic effect</span> Visual phenomenon

The stroboscopic effect is a visual phenomenon caused by aliasing that occurs when continuous rotational or other cyclic motion is represented by a series of short or instantaneous samples at a sampling rate close to the period of the motion. It accounts for the "wagon-wheel effect", so-called because in video, spoked wheels sometimes appear to be turning backwards.

Stereopsis is the component of depth perception retrieved through binocular vision. Stereopsis is not the only contributor to depth perception, but it is a major one. Binocular vision happens because each eye receives a different image because they are in slightly different positions on one's head. These positional differences are referred to as "horizontal disparities" or, more generally, "binocular disparities". Disparities are processed in the visual cortex of the brain to yield depth perception. While binocular disparities are naturally present when viewing a real three-dimensional scene with two eyes, they can also be simulated by artificially presenting two different images separately to each eye using a method called stereoscopy. The perception of depth in such cases is also referred to as "stereoscopic depth".

Riccò's law, discovered by astronomer Annibale Riccò, is one of several laws that describe a human's ability to visually detect targets on a uniform background. This law explains the visual relationship between a target angular area A and target luminance increment required for detection when that target is unresolved. The law is given by:

<span class="mw-page-title-main">Fixation disparity</span>

Fixation disparity is a tendency of the eyes to drift in the direction of the heterophoria. While the heterophoria refers to a fusion-free vergence state, the fixation disparity refers to a small misalignment of the visual axes when both eyes are open in an observer with normal fusion and binocular vision. The misalignment may be vertical, horizontal or both. The misalignment is much smaller than that of strabismus. While strabismus prevents binocular vision, fixation disparity keeps binocular vision, however it may reduce a patient's level of stereopsis. A patient may or may not have fixation disparity and a patient may have a different fixation disparity at distance than near. Observers with a fixation disparity are more likely to report eye strain in demanding visual tasks; therefore, tests of fixation disparity belong to the diagnostic tools used by eye care professionals: remediation includes vision therapy, prism eye glasses, or visual ergonomics at the workplace.

<span class="mw-page-title-main">Infant visual development</span>

Infant vision concerns the development of visual ability in human infants from birth through the first years of life. The aspects of human vision which develop following birth include visual acuity, tracking, color perception, depth perception, and object recognition.

<span class="mw-page-title-main">Contrast (vision)</span> Difference in luminance and/or color that makes objects visually distinguishable

Contrast is the contradiction in luminance or colour that makes an object distinguishable. In visual perception of the real world, contrast is determined by the difference in the colour and brightness of the object and other objects within the same field of view. The human visual system is more sensitive to contrast than absolute luminance; we can perceive the world similarly regardless of the huge changes in illumination over the day or from place to place. The maximum contrast of an image is the contrast ratio or dynamic range. Images with a contrast ratio close to their medium's maximum possible contrast ratio experience a conservation of contrast, wherein any increase in contrast in some parts of the image must necessarily result in a decrease in contrast elsewhere. Brightening an image will increase contrast in dark areas but decrease contrast in bright areas, while darkening the image will have the opposite effect. Bleach bypass destroys contrast in both the darkest and brightest parts of an image while enhancing luminance contrast in areas of intermediate brightness.

In humans, monocular vision is vision using only one eye, or using multiple eyes independently of each other. Depth perception in monocular vision is reduced compared to binocular vision, but still is active primarily due to accommodation of the eye and motion parallax. The word monocular comes from the Greek root, mono for single, and the Latin root, oculus for eye.

A perceptual paradox illustrates the failure of a theoretical prediction. Theories of perception are supposed to help a researcher predict what will be perceived when senses are stimulated.

Binocular disparity refers to the difference in image location of an object seen by the left and right eyes, resulting from the eyes’ horizontal separation (parallax). The brain uses binocular disparity to extract depth information from the two-dimensional retinal images in stereopsis. In computer vision, binocular disparity refers to the difference in coordinates of similar features within two stereo images.

<span class="mw-page-title-main">Motion-induced blindness</span>

Motion Induced Blindness (MIB) is a phenomenon of visual disappearance or perceptual illusions observed in the lab, in which stationary visual stimuli disappear as if erased in front of an observer's eyes when masked with a moving background. Most recent research has shown that microsaccades counteract disappearance but are neither necessary nor sufficient to account for MIB.

<span class="mw-page-title-main">Peripheral head-mounted display</span>

A peripheral head-mounted display ('PHMD) is avisual display mounted to the user's head that is in the peripheral of the user's field of view (FOV) / peripheral vision. Whereby the actual position of the mounting is considered to be irrelevant as long as it does not cover the entire FOV. While a PHMD provide an additional, always-available visual output channel, it does not limit the user performing real world tasks.

Binocular switch suppression (BSS) is a technique to suppress usually salient images from an individual's awareness, a type of experimental manipulation used in visual perception and cognitive neuroscience. In BSS, two images of differing signal strengths are repetitively switched between the left and right eye at a constant rate of 1 Hertz. During this process of switching, the image of lower contrast and signal strength is perceptually suppressed for a period of time.

References

  1. Foundations of binocular vision: a clinical perspective by Scott B. Steinman, Barbara A. Steinman, Ralph Philip Garzia 2000 ISBN   0-8385-2670-5 pages 153-160
  2. "Functional Burden of StrabismusDecreased Binocular Summation and Binocular Inhibition" by Pineles SL, Velez FG, Isenberg SJ, Fenoglio Z, Birch E, Nusinowitz S, and Demer JL. JAMA Ophthalmol. 2013;131(11):1413-1419
  3. Normal Binocular Vision: Theory, Investigation and Practical Aspects by David Stidwill, Robert Fletcher 2010 ISBN   1-4051-9250-X pages 29-35
  4. "Lehre von der strahlenden Energie", Mueller-Pouillets Lehrbuch der Physik und Meteorologie, Vol 2, Part 1 (1926) (Thresholds of Color Differences).
  5. Normal Binocular Vision: Theory, Investigation and Practical Aspects by David Stidwill, Robert Fletcher 2010 ISBN   1-4051-9250-X pages 29-35
  6. MacLeod, D. I. A. (1972). The Schrödinger equation in binocular brightness combination. Perception, 1, 321–324.