Bioirrigation

Last updated
Bioturbation and bioirrigation in the sediment at the bottom of a coastal ecosystems Benthic bioturbation and bioirrigation.jpg
Bioturbation and bioirrigation in the sediment at the bottom of a coastal ecosystems

Bioirrigation refers to the process of benthic organisms flushing their burrows with overlying water. The exchange of dissolved substances between the porewater and overlying seawater that results is an important process in the context of the biogeochemistry of the oceans.

Contents

Marine coastal ecosystems often have organisms that destabilize sediment. They change the physical state of the sediment. Thus improving the conditions for other organisms and themselves. These organisms often also cause bioturbation, which is commonly used interchangeably or in reference with bioirrigation. [1]

Bioirrigation works as two different processes. These processes are known as particle reworking and ventilation, which is the work of benthic macro-invertebrates (usually ones that burrow). This particle reworking and ventilation is caused by the organisms when they feed (faunal feeding), defecate, burrow, and respire.

Bioirrigation is responsible for a large amount of oxidative transport and has a large impact on biogeochemical cycles.

Bioirrigation's Role in Elemental Cycling

Coastal environment Norre Vorupor Coast one third sky 2012-11-18.jpg
Coastal environment

Bioirrigation is a main component in element cycling. Some of these elements include: Magnesium, Nitrogen, Calcium, Strontium, Molybdenum, and Uranium. Other elements are only displaced at certain steps in the bioirrigation process. Aluminium, Iron, Cobalt, Copper, Zinc, and Cerium are all affected at the start of the process, when the larvae begins to dig into the sediment. While Manganese, Nickel, Arsenic, Cadmium and Caesium were all mobilized slightly after the burrowing process. [2]

Challenges to Studying Bioirrigation

When trying to describe this biologically driven dynamic process, scientists have not been able to develop a 3D image of the process yet.

New Mechanisms to Study Bioirrigation

4D tracing of bioirrigation in marine sediment

There is a hybrid medical imaging technique using a position emission tomography/computed tomography (PET/CT) to measure the ventilation and visualize the pore water advection that is caused by the organisms in 4D imaging. [3]

4D tracing of bioirrigation in marine sediment

Ecological Importance of Bioirrigation

When coastal ecosystems do not have bioirrigating organisms, like lugworms, it results in a lot of sedimentary problems. Some of these problems include clogging of the sediment with organic-rich fine particles and a drastic decrease in sediment permeability. It also makes it so the oxygen cannot penetrate deeply into the sediment and there is accumulation of reduced mineralized products in pore water. [4] These problems disrupt the foundations of a coastal ecosystem.

Economic Impacts

Two organisms that contribute to the bioturbation of soil are Nephtys caeca (Fabricius) and Nereis virens (Sars) annelidae. They dig, bioirrigate, and feed in the sediment and they homogenize the particles found in the sediment when they partake in these activities because of their erratic movements. The bioirrigation generated by these organisms modifies the distribution of dinoflagellate cysts in the sedimentary column. They either bury them or raise them back to the surface, keeping them rotating. One of the most important dinoflagellates that these organisms help distribute is called noxious microalgae and it is responsible for the formation of toxic red tides. These red tides poison mollusks and crustaceans which results in very important economic losses in the fishing industry. [5]

A depiction of the kind of noxious microalgae that would form toxic red tides. Algal bloom(akasio) by Noctiluca in Nagasaki.jpg
A depiction of the kind of noxious microalgae that would form toxic red tides.

Case Study: Boston Harbor

The sediments of marine environments are important sites of methylmercury (MMHg) production. This production provides important sources of this MMHg to near-shore and off-shore water columns and food webs. Scientists have measured the flux in production across 4 different stations in the Boston Harbor which had different bioirrigation site densities. There is a strong linear relationship between the amount of MMHg exchange and the infaunal burrow density. In the Boston Harbor, it was shown that bioirrigation stimulates the production of methylmercury and water column flux. [6]

Related Research Articles

Sedimentary rock Rock formed by the deposition and subsequent cementation of material

Sedimentary rocks are types of rock that are formed by the accumulation or deposition of mineral or organic particles at Earth's surface, followed by cementation. Sedimentation is the collective name for processes that cause these particles to settle in place. The particles that form a sedimentary rock are called sediment, and may be composed of geological detritus (minerals) or biological detritus. The geological detritus originated from weathering and erosion of existing rocks, or from the solidification of molten lava blobs erupted by volcanoes. The geological detritus is transported to the place of deposition by water, wind, ice or mass movement, which are called agents of denudation. Biological detritus was formed by bodies and parts of dead aquatic organisms, as well as their fecal mass, suspended in water and slowly piling up on the floor of water bodies. Sedimentation may also occur as dissolved minerals precipitate from water solution.

Benthos

Benthos, also known as benthon, is the community of organisms that live on, in, or near the bottom of a sea, river, lake, or stream, also known as the benthic zone. This community lives in or near marine or freshwater sedimentary environments, from tidal pools along the foreshore, out to the continental shelf, and then down to the abyssal depths.

Estuary Partially enclosed coastal body of brackish water

An estuary is a partially enclosed coastal body of brackish water with one or more rivers or streams flowing into it, and with a free connection to the open sea. Estuaries form a transition zone between river environments and maritime environments and are an example of an ecotone. Estuaries are subject both to marine influences such as tides, waves, and the influx of saline water and to fluvial influences such as flows of freshwater and sediment. The mixing of seawater and freshwater provides high levels of nutrients both in the water column and in sediment, making estuaries among the most productive natural habitats in the world.

Salt marsh Coastal ecosystem between land and open saltwater that is regularly flooded

A salt marsh or saltmarsh, also known as a coastal salt marsh or a tidal marsh, is a coastal ecosystem in the upper coastal intertidal zone between land and open saltwater or brackish water that is regularly flooded by the tides. It is dominated by dense stands of salt-tolerant plants such as herbs, grasses, or low shrubs. These plants are terrestrial in origin and are essential to the stability of the salt marsh in trapping and binding sediments. Salt marshes play a large role in the aquatic food web and the delivery of nutrients to coastal waters. They also support terrestrial animals and provide coastal protection.

Mangrove crab Crabs that live on or among mangroves

Mangrove crabs are crabs that live among mangroves, and may belong to many different species and even families. They have been shown to be ecologically significant in many ways. They keep much of the energy within the forest by burying and consuming leaf litter. Along with burrowing in the ground, at high tide and in the face of predators these crustaceans can climb trees to protect themselves. The hermit crab and the mangrove crab are the only crustaceans that can climb trees as a defense mechanism. Furthermore, their feces may form the basis of a coprophagous food chain contributing to mangrove secondary production.

Sedimentation Tendency for particles in suspension to settle down

Sedimentation is the deposition of sediments. It takes place when particles in suspension settle out of the fluid in which they are entrained and come to rest against a barrier. This is due to their motion through the fluid in response to the forces acting on them: these forces can be due to gravity, centrifugal acceleration, or electromagnetism. Settling is the falling of suspended particles through the liquid, whereas sedimentation is the final result of the settling process.

Bioturbation reworking of soils and sediments by organisms.

Bioturbation is defined as the reworking of soils and sediments by animals or plants. These include burrowing, ingestion, and defecation of sediment grains. Bioturbating activities have a profound effect on the environment and are thought to be a primary driver of biodiversity. The formal study of bioturbation began in the 1800s by Charles Darwin experimenting in his garden. The disruption of aquatic sediments and terrestrial soils through bioturbating activities provides significant ecosystem services. These include the alteration of nutrients in aquatic sediment and overlying water, shelter to other species in the form of burrows in terrestrial and water ecosystems, and soil production on land.

Sediment–water interface The boundary between bed sediment and the overlying water column

In oceanography and limnology, the sediment–water interface is the boundary between bed sediment and the overlying water column. The term usually refers to a thin layer of water at the very surface of sediments on the seafloor. In the ocean, estuaries, and lakes, this layer interacts with the water above it through physical flow and chemical reactions mediated by the micro-organisms, animals, and plants living at the bottom of the water body. The topography of this interface is often dynamic, as it is affected by physical processes and biological processes. Physical, biological, and chemical processes occur at the sediment-water interface as a result of a number of gradients such as chemical potential gradients, pore water gradients, and oxygen gradients.

Mangrove forest

Mangrove forests, also called mangrove swamps, mangrove thickets or mangals, are productive wetlands that occur in coastal intertidal zones. Mangrove forests grow mainly at tropical and subtropical latitudes because mangrove trees cannot withstand freezing temperatures. There are about 80 different species of mangrove trees. All of these trees grow in areas with low-oxygen soil, where slow-moving waters allow fine sediments to accumulate.

In biogeochemistry, remineralisation refers to the breakdown or transformation of organic matter into its simplest inorganic forms. These transformations form a crucial link within ecosystems as they are responsible for liberating the energy stored in organic molecules and recycling matter within the system to be reused as nutrients by other organisms.

Marine sediment

Marine sediment, or ocean sediment, or seafloor sediment, are deposits of insoluble particles that have accumulated on the seafloor. These particles have their origins in soil and rocks and have been transported from the land to the sea, mainly by rivers but also by dust carried by wind and by the flow of glaciers into the sea. Additional deposits come from marine organisms and chemical precipitation in seawater, as well as from underwater volcanoes and meteorite debris.

Macrobenthos Organisms that live at the bottom of a water column

Macrobenthos consists of the organisms that live at the bottom of a water column and are visible to the naked eye. In some classification schemes, these organisms are larger than 1 mm; in another, the smallest dimension must be at least 0.5 mm. They include polychaete worms, pelecypods, anthozoans, echinoderms, sponges, ascidians, crustaceans.

The Burgess Shale of British Columbia is famous for its exceptional preservation of mid-Cambrian organisms. Around 69 other sites have been discovered of a similar age, with soft tissues preserved in a similar, though not identical, fashion. Additional sites with a similar form of preservation are known from the Ediacaran and Ordovician periods.

Cambrian substrate revolution Diversification of animal burrowing

The "Cambrian substrate revolution" or "Agronomic revolution", evidenced in trace fossils, is the diversification of animal burrowing during the early Cambrian period.

The soil biomantle can be described and defined in several ways. Most simply, the soil biomantle is the organic-rich bioturbated upper part of the soil, including the topsoil where most biota live, reproduce, die, and become assimilated. The biomantle is thus the upper zone of soil that is predominantly a product of organic activity and the area where bioturbation is a dominant process. Soil bioturbation consists predominantly of three subsets: faunalturbation, floralturbation, and fungiturbation. All three processes promote soil parent material destratification, mixing, and often particle size sorting, leading with other processes to the formation of soil and its horizons. While the general term bioturbation refers mainly to these three mixing processes, unless otherwise specified it is commonly used as a synonym to faunalturbation.

Marine habitats Habitat that supports marine life

Marine habitats are habitats that support marine life. Marine life depends in some way on the saltwater that is in the sea. A habitat is an ecological or environmental area inhabited by one or more living species. The marine environment supports many kinds of these habitats. Marine habitats can be divided into coastal and open ocean habitats. Coastal habitats are found in the area that extends from as far as the tide comes in on the shoreline out to the edge of the continental shelf. Most marine life is found in coastal habitats, even though the shelf area occupies only seven percent of the total ocean area. Open ocean habitats are found in the deep ocean beyond the edge of the continental shelf.

Shallow water marine environment

Shallow water marine environment refers to the area between the shore and deeper water, such as a reef wall or a shelf break. This environment is characterized by oceanic, geological and biological conditions, as described below. The water in this environment is shallow and clear, allowing the formation of different sedimentary structures, carbonate rocks, coral reefs, and allowing certain organisms to survive and become fossils.

Abarenicola pacifica or the Pacific lugworm is a large species of polychaete worm found on the west coast of North America and also in Japan. The worms live out of sight in burrows under the sand and produce casts which are visible on the surface.

Blue carbon Carbon captured by the worlds marine ecosystems

Blue carbon is carbon sequestration by the world's oceanic and coastal ecosystems, mostly by algae, seagrasses, macroalgae, mangroves, salt marshes and other plants in coastal wetlands. This occurs through plant growth and the accumulation and burial of organic matter in the soil. Because oceans cover 70% of the planet, ocean ecosystem restoration has the greatest blue carbon development potential. Research is ongoing, but in some cases it has been found that these types of ecosystems remove far more carbon than terrestrial forests, and store it for millennia.

Benthic-pelagic coupling are processes that connect the benthic zone and the pelagic zone through the exchange of energy, mass, or nutrients. These processes play a prominent role in both freshwater and marine ecosystems and are influenced by a number of chemical, biological, and physical forces that are crucial to functions from nutrient cycling to energy transfer in food webs.

References

  1. Volkenborn, N.; Hedtkamp, S. I. C.; van Beusekom, J. E. E.; Reise, K. (2007-08-01). "Effects of bioturbation and bioirrigation by lugworms (Arenicola marina) on physical and chemical sediment properties and implications for intertidal habitat succession". Estuarine, Coastal and Shelf Science. 74 (1–2): 331–343. Bibcode:2007ECSS...74..331V. doi:10.1016/j.ecss.2007.05.001.
  2. Schaller, Jorg (Jul 2014). "Bioturbation/bioirrigation by Chironomus plumosus as main factor controlling elemental remobilization from aquatic sediments?". Chemosphere. 107: 336–343. Bibcode:2014Chmsp.107..336S. doi:10.1016/j.chemosphere.2013.12.086. PMID   24457053.
  3. Delefosse, Matthieu (2015). "Seeing The Unseen—Bioturbation In 4D: Tracing Bioirrigation In Marine Sediment Using Positron Emission Tomography And Computed Tomography". PLOS ONE. 10 (4): e0122201. Bibcode:2015PLoSO..1022201D. doi: 10.1371/journal.pone.0122201 . PMC   4383581 . PMID   25837626.
  4. N., Volkenborn (2007). "Bioturbation and Bioirrigation Extend the Open Exchange Regions in Permeable Sediments". Limnology and Oceanography. 52 (5): 1898. Bibcode:2007LimOc..52.1898V. CiteSeerX   10.1.1.569.5742 . doi:10.4319/lo.2007.52.5.1898.
  5. Piot, Adeline (May 2008). "Experimental Study On The Influence Of Bioturbation Performed By Nephtys Caeca (Fabricius) And Nereis Virens (Sars) Annelidae On The Distribution Of Dinoflagellate Cysts In The Sediment". Journal of Experimental Marine Biology and Ecology. 359 (2): 92–101. doi:10.1016/j.jembe.2008.02.023.
  6. Benoit, Janina (2009). "Effect Of Bioirrigation On Sediment-Water Exchange Of Methylmercury In Boston Harbor, Massachusetts". Environmental Science & Technology. 43 (10): 3669–3674. Bibcode:2009EnST...43.3669B. doi:10.1021/es803552q. PMID   19544871.