Biometric tokenization

Last updated

Biometric tokenization is the process of substituting a stored biometric template with a non-sensitive equivalent, called a token, that lacks extrinsic or exploitable meaning or value. The process combines the biometrics with public-key cryptography to enable the use of a stored biometric template (e.g., fingerprint image on a mobile or desktop device) for secure or strong authentication to applications or other systems without presenting the template in its original, replicable form.

Contents

Biometric tokenization in particular builds upon the longstanding practice of tokenization for sequestering secrets in this manner by having the secret, such as user credentials like usernames and passwords or other Personally Identifiable Information (PII), be represented by a substitute key in the public sphere.

The technology is most closely associated with authentication to online applications such as those running on desktop computers, mobile devices, and Internet of Things (IoT) nodes. Specific use cases include secure login, payments, physical access, management of smart, connected products such as connected homes and connected cars, as well as adding a biometric component to two-factor authentication and multi-factor authentication.

Origins

With the September 9, 2014 launch of its Apple Pay service, [1] Cupertino, Calif.-based Apple, Inc. initiated the conversation surrounding use biometricsupported tokenization of payment data for point of sale retail transactions. Apple Pay tokenizes mobile users’ virtualized bank card data in order to wirelessly transmit a payment, represented as a token, to participating retailers that support Apple Pay (e.g. through partnerships and supported hardware). Apple Pay leverages its proprietary Touch ID fingerprint scanner on its proprietary iPhone line with, aside from cryptography, the added security of its Apple A7 system on a chip that includes a Secure Enclave hardware feature that stores and protects the data from the Touch ID fingerprint sensor. Apple Pay then, at least for payments, is credited with innovating in the space of biometric tokenization even if the use case was limited to payment convenience and security, restricted to the company’s own hardware and software, and despite the fact that executives did not publicly utter the phrase “biometric tokenization” or speak about the underlying technology.

While biometric tokenization and Apple Pay are similar, biometric tokenization as it is known today and particularly using the term verbatim is an authentication feature that goes beyond payment convenience and security. Other distinctive features are that biometric tokenization can be implemented on other operating systems such as OSX, Microsoft Windows, Google Android for password-less login to desktop and mobile applications.

Mechanics

Biometric tokenization like its non-biometric counterpart, tokenization, utilizes end-to-end encryption to safeguard data in transit. With biometric tokenization, a user initiates his or her authentication first by accessing or unlocking biometrics such as fingerprint recognition, facial recognition system, speech recognition, iris recognition or retinal scan, or combination of these biometric modalities. The user’s unique qualities are generally stored in one of two ways, either on-device in a trusted execution environment (TEE) or trusted platform module (TPM), or on a server the way other data are stored.

Biometric tokenization champions typically prefer biometric templates to be encrypted and stored in TEEs or TPMs so as to prevent large-scale data breaches such as the June 2015 U.S. Office of Personnel Management one. Biometric tokenization when aided by on-device storage of user data also can preserve internet privacy because user data are stored individually inside single devices rather than aggregated on ostensibly vulnerable servers. Moving biometric user credentials either for two-factor authentication or unqualified authentication, for example, off of servers and onto devices is a tenet of the Fast Identity Online (FIDO) Alliance, [2] an industry consortium concerned with replacing passwords with decentralized biometrics.

The next step in biometric tokenization after the unlocking of user credentials in the trusted area of their device is for the credentials to be tokenized, with the token containing the precise data required for the action (e.g. login or payment). This access token can be time-stamped as in the case of one-time passwords or session tokens so as to be useful for a specific time period, or they may not be. With biometric tokenization this token is then validated by means of joint client-side and server-side validation, which occurs through a challenge-response token exchange. The user is then logged in, authenticated, or otherwise granted access.

Information Security

In order to achieve the highest level of privacy and protection when calculating and transmitting sensitive information, biometric tokenization leverages existing encryption algorithms, authentication protocols, as well as hardware trust zones. Combining some or all of these methods maximizes the level of protection needed to uphold the integrity of the process and security of data that could otherwise expose users to a breach of trust on a mass scale.

Encryption Algorithms in Use

Authentication Protocols in Use

Hardware Trust Zones in Use

Related Research Articles

An authenticator is the means used to confirm the identity of a user, that is, to perform digital authentication. A person authenticates to a computer system or application by demonstrating that he or she has possession and control of an authenticator. In the simplest case, the authenticator is a common password.

Authentication The act of proving an assertion, often the identity of a computer system user

Authentication is the act of proving an assertion, such as the identity of a computer system user. In contrast with identification, the act of indicating a person or thing's identity, authentication is the process of verifying that identity. It might involve validating personal identity documents, verifying the authenticity of a website with a digital certificate, determining the age of an artifact by carbon dating, or ensuring that a product or document is not counterfeit.

Single sign-on (SSO) is an authentication scheme that allows a user to log in with a single ID and password to any of several related, yet independent, software systems.

A one-time password (OTP), also known as one-time PIN or dynamic password, is a password that is valid for only one login session or transaction, on a computer system or other digital device. OTPs avoid a number of shortcomings that are associated with traditional (static) password-based authentication; a number of implementations also incorporate two-factor authentication by ensuring that the one-time password requires access to something a person has as well as something a person knows.

A security token is a peripheral device used to gain access to an electronically restricted resource. The token is used in addition to or in place of a password. It acts like an electronic key to access something. Examples include a wireless keycard opening a locked door, or in the case of a customer trying to access their bank account online, the use of a bank-provided token can prove that the customer is who they claim to be.

Logical Security consists of software safeguards for an organisation’s systems, including user identification and password access, authenticating, access rights and authority levels. These measures are to ensure that only authorized users are able to perform actions or access information in a network or a workstation. It is a subset of computer security.

A software token is a piece of a two-factor authentication security device that may be used to authorize the use of computer services. Software tokens are stored on a general-purpose electronic device such as a desktop computer, laptop, PDA, or mobile phone and can be duplicated.

A password manager is a computer program that allows users to store, generate, and manage their passwords for local applications and online services.

Disk encryption is a technology which protects information by converting it into unreadable code that cannot be deciphered easily by unauthorized people. Disk encryption uses disk encryption software or hardware to encrypt every bit of data that goes on a disk or disk volume. It is used to prevent unauthorized access to data storage.

There are a number of security and safety features new to Windows Vista, most of which are not available in any prior Microsoft Windows operating system release.

Electronic authentication is the process of establishing confidence in user identities electronically presented to an information system. Digital authentication, or e-authentication, may be used synonymously when referring to the authentication process that confirms or certifies a person's identity and works. When used in conjunction with an electronic signature, it can provide evidence of whether data received has been tampered with after being signed by its original sender. Electronic authentication can reduce the risk of fraud and identity theft by verifying that a person is who they say they are when performing transactions online.

Pre-boot authentication (PBA) or power-on authentication (POA) serves as an extension of the BIOS, UEFI or boot firmware and guarantees a secure, tamper-proof environment external to the operating system as a trusted authentication layer. The PBA prevents anything being read from the hard disk such as the operating system until the user has confirmed they have the correct password or other credentials including multi-factor authentication.

Multi-factor authentication is an electronic authentication method in which a device user is granted access to a website or application only after successfully presenting two or more pieces of evidence to an authentication mechanism: knowledge, possession, and inherence. MFA protects the user from an unknown person trying to access their data such as personal ID details or financial assets.

A trusted execution environment (TEE) is a secure area of a main processor. It guarantees code and data loaded inside to be protected with respect to confidentiality and integrity. A TEE as an isolated execution environment provides security features such as isolated execution, integrity of applications executing with the TEE, along with confidentiality of their assets. In general terms, the TEE offers an execution space that provides a higher level of security for trusted applications running on the device than a rich operating system (OS) and more functionality than a 'secure element' (SE).

Touch ID Electronic fingerprint recognition feature by Apple

Touch ID is an electronic fingerprint recognition feature, designed and released by Apple Inc., that allows users to unlock devices, make purchases in the various Apple digital media stores, and authenticate Apple Pay online or in apps. It can also be used to lock and unlock password-protected notes on iPhone and iPad. Touch ID was first introduced in iPhones with 2013's iPhone 5S, In 2015, Apple introduced a faster second-generation Touch ID in the iPhone 6S; a year later in 2016, it made its laptop debut in the MacBook Pro integrated on the right side of the Touch Bar. Touch ID has been used on all iPads since the iPad Air 2 was introduced in 2014. In MacBooks, each user account can have up to three fingerprints, and a total of five fingerprints across the system.

SQRL

SQRL or Secure, Quick, Reliable Login is a draft open standard for secure website login and authentication. The software typically uses a link of the scheme sqrl:// or optionally a QR code, where a user identifies via a pseudonymous zero-knowledge proof rather than providing a user ID and password. This method is thought to be impervious to a brute force password attack or data breach. It shifts the burden of security away from the party requesting the authentication and closer to the operating system implementation of what is possible on the hardware, as well as to the user. SQRL was proposed by Steve Gibson of Gibson Research Corporation in October 2013 as a way to simplify the process of authentication without the risk of revelation of information about the transaction to a third party.

FIDO Alliance Industry consortium working on authentication mechanisms

The FIDOAlliance is an open industry association launched in February 2013 whose mission is to develop and promote authentication standards that help reduce the world’s over-reliance on passwords. FIDO addresses the lack of interoperability among strong authentication devices and reduces the problems users face creating and remembering multiple usernames and passwords.

WebAuthn Public-key authentication standard

Web Authentication (WebAuthn) is a web standard published by the World Wide Web Consortium (W3C). WebAuthn is a core component of the FIDO2 Project under the guidance of the FIDO Alliance. The goal of the project is to standardize an interface for authenticating users to web-based applications and services using public-key cryptography.

Bitwarden Open-source password manager

Bitwarden is a free and open-source password management service that stores sensitive information such as website credentials in an encrypted vault. The Bitwarden platform offers a variety of client applications including a web interface, desktop applications, browser extensions, mobile apps, and a CLI. Bitwarden offers a cloud-hosted service as well as the ability to deploy the solution on-premises.

Passwordless authentication is an authentication method in which a user can log in to a computer system without the entering a password or any other knowledge-based secret.

References

  1. "Apple - Press Info - Apple Announces Apple Pay". www.apple.com. Retrieved 2016-08-15.
  2. "FIDO Alliance". fidoalliance.org. Retrieved 2016-08-15.
  3. "White-box cryptography". www.whiteboxcrypto.com. Retrieved 2016-08-15.
  4. "FIDO Alliance » Specifications Overview". fidoalliance.org. Retrieved 2016-08-15.
  5. "TrustZone - ARM". www.arm.com. Retrieved 2016-08-15.
  6. "Secure enclave" (PDF).