Bis(diphenylphosphino)methane

Last updated
1,1-bis(diphenylphosphino)­methane
Dppm-2D-skeletal.png
Dppm-from-xtal-3D-balls.png
Names
Preferred IUPAC name
Methylenebis(diphenylphosphane)
Other names
Methylenebis(diphenylphosphine)
dppm
Identifiers
3D model (JSmol)
ChEMBL
ChemSpider
ECHA InfoCard 100.016.541 OOjs UI icon edit-ltr-progressive.svg
EC Number
  • 218-194-2
PubChem CID
UNII
  • InChI=1S/C25H22P2/c1-5-13-22(14-6-1)26(23-15-7-2-8-16-23)21-27(24-17-9-3-10-18-24)25-19-11-4-12-20-25/h1-20H,21H2 Yes check.svgY
    Key: XGCDBGRZEKYHNV-UHFFFAOYSA-N Yes check.svgY
  • InChI=1/C25H22P2/c1-5-13-22(14-6-1)26(23-15-7-2-8-16-23)21-27(24-17-9-3-10-18-24)25-19-11-4-12-20-25/h1-20H,21H2
    Key: XGCDBGRZEKYHNV-UHFFFAOYAH
  • P(c1ccccc1)(c2ccccc2)CP(c3ccccc3)c4ccccc4
Properties
C25H22P2
Molar mass 384.399 g·mol−1
AppearanceWhite crystalline powder
Melting point 118 to 122 °C (244 to 252 °F; 391 to 395 K)
Insoluble in water
Hazards
GHS labelling:
GHS-pictogram-exclam.svg
Warning
H315, H319, H335
P261, P264, P271, P280, P302+P352, P304+P340, P305+P351+P338, P312, P321, P332+P313, P337+P313, P362, P403+P233, P405, P501
Safety data sheet (SDS) External MSDS
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
Yes check.svgY  verify  (what is  Yes check.svgYX mark.svgN ?)

1,1-Bis(diphenylphosphino)methane (dppm), is an organophosphorus compound with the formula CH2(PPh2)2. Dppm, a white, crystalline powder, is used in inorganic and organometallic chemistry as a ligand. [1] It is more specifically a chelating ligand because it is a ligand that can bond to metals with two phosphorus donor atoms. The natural bite angle is 73°. [2]

Contents

Synthesis and reactivity

1,1-Bis(diphenylphosphino)methane was first prepared by the reaction of sodium diphenylphosphide (Ph2PNa) with dichloromethane: [3]

Ph3P + 2 Na → Ph2PNa + NaPh
2NaPPh2 + CH2Cl2 → Ph2PCH2PPh2 + 2 NaCl

The methylene group (CH2) in dppm (and especially its complexes) is mildly acidic. The ligand can be oxidized to give the corresponding oxides and sulfides CH2[P(E)Ph2]2 (E = O, S). The methylene group is even more acidic in these derivatives.

Coordination chemistry

As a chelating ligand, 1,1-bis(diphenylphosphino)methane forms a four-membered ring with the constituents MP2C. The ligand promotes the formation of bimetallic complexes that feature five-membered M2P2C rings. In this way, dppm promotes the formation of bimetallic complexes. One such example is the dipalladium chloride, Pd2Cl2(dppm)2. In this complex, the oxidation state for the Pd centres are I. Bis(diphenylphosphino)methane gives rise to a family of coordination compounds known as A-frame complexes. [4]

Ball-and-stick model of [Pd2Cl2(dppm)2]. Pd2Cl2(dppm)2-from-xtal-3D-ball-stick-hybrid.png
Ball-and-stick model of [Pd2Cl2(dppm)2].

Related Research Articles

<span class="mw-page-title-main">Triphenylphosphine</span> Chemical compound

Triphenylphosphine (IUPAC name: triphenylphosphane) is a common organophosphorus compound with the formula P(C6H5)3 and often abbreviated to PPh3 or Ph3P. It is widely used in the synthesis of organic and organometallic compounds. PPh3 exists as relatively air stable, colorless crystals at room temperature. It dissolves in non-polar organic solvents such as benzene and diethyl ether.

<span class="mw-page-title-main">Palladium(II) chloride</span> Chemical compound

Palladium(II) chloride, also known as palladium dichloride and palladous chloride, are the chemical compounds with the formula PdCl2. PdCl2 is a common starting material in palladium chemistry – palladium-based catalysts are of particular value in organic synthesis. It is prepared by the reaction of chlorine with palladium metal at high temperatures.

<span class="mw-page-title-main">Tetrakis(triphenylphosphine)palladium(0)</span> Chemical compound

Tetrakis(triphenylphosphine)palladium(0) (sometimes called quatrotriphenylphosphine palladium) is the chemical compound [Pd(P(C6H5)3)4], often abbreviated Pd(PPh3)4, or rarely PdP4. It is a bright yellow crystalline solid that becomes brown upon decomposition in air.

<span class="mw-page-title-main">1,2-Bis(diphenylphosphino)ethane</span> Chemical compound

1,2-Bis(diphenylphosphino)ethane (dppe) is an organophosphorus compound with the formula (Ph2PCH2)2 (Ph = phenyl). It is a commonly used bidentate ligand in coordination chemistry. It is a white solid that is soluble in organic solvents.

<span class="mw-page-title-main">Hapticity</span> Number of contiguous atoms in a ligand that bond to the central atom in a coordination complex

In coordination chemistry, hapticity is the coordination of a ligand to a metal center via an uninterrupted and contiguous series of atoms. The hapticity of a ligand is described with the Greek letter η ('eta'). For example, η2 describes a ligand that coordinates through 2 contiguous atoms. In general the η-notation only applies when multiple atoms are coordinated. In addition, if the ligand coordinates through multiple atoms that are not contiguous then this is considered denticity, and the κ-notation is used once again. When naming complexes care should be taken not to confuse η with μ ('mu'), which relates to bridging ligands.

<span class="mw-page-title-main">1,1'-Bis(diphenylphosphino)ferrocene</span> Chemical compound

1,1-Bis(diphenylphosphino)ferrocene, commonly abbreviated dppf, is an organophosphorus compound commonly used as a ligand in homogeneous catalysis. It contains a ferrocene moiety in its backbone, and is related to other bridged diphosphines such as 1,2-bis(diphenylphosphino)ethane (dppe).

Martin Arthur Bennett FRS is an Australian inorganic chemist. He gained recognition for studies on the co-ordination chemistry of tertiary phosphines, olefins, and acetylenes, and the relationship of their behaviour to homogeneous catalysis.

<span class="mw-page-title-main">Diphosphines</span>

Diphosphines, sometimes called bisphosphanes, are organophosphorus compounds most commonly used as bidentate phosphine ligands in inorganic and organometallic chemistry. They are identified by the presence of two phosphino groups linked by a backbone, and are usually chelating. A wide variety of diphosphines have been synthesized with different linkers and R-groups. Alteration of the linker and R-groups alters the electronic and steric properties of the ligands which can result in different coordination geometries and catalytic behavior in homogeneous catalysts.

<span class="mw-page-title-main">1,3-Bis(diphenylphosphino)propane</span> Chemical compound

1,3-Bis(diphenylphosphino)propane (dppp) is an organophosphorus compound with the formula Ph2P(CH2)3PPh2. The compound is a white solid that is soluble in organic solvents. It is slightly air-sensitive, degrading in air to the phosphine oxide. It is classified as a diphosphine ligand in coordination chemistry and homogeneous catalysis.

<span class="mw-page-title-main">Bis(triphenylphosphine)palladium chloride</span> Chemical compound

Bis(triphenylphosphine)palladium chloride is a coordination compound of palladium containing two triphenylphosphine and two chloride ligands. It is a yellow solid that is soluble in some organic solvents. It is used for palladium-catalyzed coupling reactions, e.g. the Sonogashira–Hagihara reaction. The complex is square planar. Many analogous complexes are known with different phosphine ligands.

Organoplatinum chemistry is the chemistry of organometallic compounds containing a carbon to platinum chemical bond, and the study of platinum as a catalyst in organic reactions. Organoplatinum compounds exist in oxidation state 0 to IV, with oxidation state II most abundant. The general order in bond strength is Pt-C (sp) > Pt-O > Pt-N > Pt-C (sp3). Organoplatinum and organopalladium chemistry are similar, but organoplatinum compounds are more stable and therefore less useful as catalysts.

<span class="mw-page-title-main">Metal-phosphine complex</span>

A metal-phosphine complex is a In coordination complex containing one or more phosphine ligands. Almost always, the phosphine is an organophosphine of the type R3P (R = alkyl, aryl). Metal phosphine complexes are useful in homogeneous catalysis. Prominent examples of metal phosphine complexes include Wilkinson's catalyst (Rh(PPh3)3Cl), Grubbs' catalyst, and tetrakis(triphenylphosphine)palladium(0).

<span class="mw-page-title-main">Brookhart's acid</span> Chemical compound

Brookhart's acid is the salt of the diethyl ether oxonium ion and tetrakis[3,5-bis(trifluoromethyl)phenyl]borate (BAr′4). It is a colorless solid, used as a strong acid. The compound was first reported by Volpe, Grant, and Brookhart in 1992.

In chemistry, vinylidenes are compounds with the functional group C=CH2. An example is 1,1-dichloroethene (CCl2=CH2) commonly called vinylidene chloride. It and vinylidene fluoride are precursors to commercially useful polymers.

Bernard Leslie Shaw, FRS was an English chemist who made notable contributions to organometallic chemistry. He was Professor of Inorganic and Structural Chemistry at the University of Leeds.

<span class="mw-page-title-main">Transition-metal allyl complex</span>

Transition-metal allyl complexes are coordination complexes with allyl and its derivatives as ligands. Allyl is the radical with the connectivity CH2CHCH2, although as a ligand it is usually viewed as an allyl anion CH2=CH−CH2, which is usually described as two equivalent resonance structures.

In chemistry, compounds of palladium(III) feature the noble metal palladium in the unusual +3 oxidation state. Compounds of Pd(III) occur in mononuclear and dinuclear forms. Palladium(III) is most often invoked, not observed in mechanistic organometallic chemistry.

<span class="mw-page-title-main">1,4-Bis(diphenylphosphino)butane</span> Chemical compound

1,4-Bis(diphenylphosphino)butane (dppb) is an organophosphorus compound with the formula (Ph2PCH2CH2)2. It is less commonly used in coordination chemistry than other diphosphine ligands such as dppe. It is a white solid that is soluble in organic solvents.

<span class="mw-page-title-main">Transition metal acyl complexes</span>

Transition metal acyl complexes describes organometallic complexes containing one or more acyl (RCO) ligands. Such compounds occur as transient intermediates in many industrially useful reactions, especially carbonylations.

cis-1,2-Bis(diphenylphosphino)ethylene (dppv) is an organophosphorus compound with the formula C2H2(PPh2)2 (Ph = C6H5). Both the cis and trans isomers are known, but the cis isomer is of primary interest. Classified as a diphosphine ligand, it is a bidentate ligand in coordination chemistry. For example it gives rise to the complex Ni(dppv)2 and the coordination polymer [Ni(dppv)]n. As a chelating ligand, dppv is very similar to 1,2-bis(diphenylphosphino)benzene.

References

  1. Humphrey, Mark G.; Lee, Jeanne; Hockless, David C.R.; Skelton, Brian W.; White, Allan H. (1993). "Mixed-Metal Cluster Chemistry". Organometallics . 12 (3468): 3468. doi:10.1021/om00033a017.
  2. Birkholz, Mandy-Nicole; Freixa, Zoraida; van Leeuwen, Piet W. N. M. (2009). "Bite angle effects of diphosphines in C–C and C–X bond forming cross coupling reactions". Chemical Society Reviews. 38 (4): 1099. doi:10.1039/B806211K. PMID   19421583.
  3. W. Hewertson & H. R. Watson (1962). "The preparation of di- and tri-tertiary phosphines". J. Chem. Soc. 12: 1490–1494. doi:10.1039/JR9620001490.
  4. Albéniz, Ana C. & Espinet, Pablo (2006). "Palladium: Inorganic & Coordination Chemistry". Encyclopedia of Inorganic Chemistry. Encyclopedia of Inorganic Chemistry . doi:10.1002/0470862106.ia178. ISBN   0-470-86078-2.
  5. G. Besenyei; L. Párkányia; E. Gács-Baitza; B. R. James (January 2002). "Crystallographic characterization of the palladium(I) dimers, syn-Pd2Cl2(dppmMe)2 and Pd2Cl2(dppm)2; solution conformational behavior of syn- and anti-Pd2Cl2(dppmMe)2 and their (μ-Se) adducts [dppmMe=μ-1,1-bis(diphenylphosphino)ethane, and DPPM=μ-bis(diphenylphosphino)methane]". Inorg. Chim. Acta. 327 (1): 179–187. doi:10.1016/S0020-1693(01)00682-X.