Bis(fulvalene)diiron

Last updated
Bis(fulvalene)diiron
Fv2Fe2.svg
Names
Other names
Biferrocenylene
Identifiers
3D model (JSmol)
ChemSpider
PubChem CID
  • InChI=1S/2C10H8.2Fe/c2*1-2-6-9(5-1)10-7-3-4-8-10;;/h2*1-8H;;/q-6;-2;;
    Key: RQVWSKGUQRKYKR-UHFFFAOYSA-N
  • [CH-]1[CH-][CH-][C-]([CH-]1)[C-]2C=CC=C2.C1=C[C-](C=C1)[C-]2C=CC=C2.[Fe].[Fe]
Properties
C20H16Fe2
Molar mass 368.038 g·mol−1
Appearanceorange solid
Density 1.76 g/cm3
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
Infobox references

Bis(fulvalene)diiron is the organoiron complex with the formula (C5H4-C5H4)2Fe2. Structurally, the molecule consists of two ferrous centers sandwiched between fulvalene dianions. The compound is an orange solid with lower solubility in benzene than ferrocene. Its structure has been verified by X-ray crystallography. [1] The compound has attracted some interest for its redox properties. [2]

Contents

Preparation

It was first prepared by Ullmann coupling of 1,1'-diiodoferrocene using copper but subsequent work produces the complex is 20-40% yield from dilithiofulvalene and ferrous chloride: [3]

2 (C5H4Li)2 + 2 FeCl2 → (C5H4-C5H4)2Fe2 + 4 LiCl

Related Research Articles

Metallocene

A metallocene is a compound typically consisting of two cyclopentadienyl anions (C
5
H
5
, abbreviated Cp) bound to a metal center (M) in the oxidation state II, with the resulting general formula (C5H5)2M. Closely related to the metallocenes are the metallocene derivatives, e.g. titanocene dichloride, vanadocene dichloride. Certain metallocenes and their derivatives exhibit catalytic properties, although metallocenes are rarely used industrially. Cationic group 4 metallocene derivatives related to [Cp2ZrCH3]+ catalyze olefin polymerization.

Ferrocene is an organometallic compound with the formula Fe(C5H5)2. The molecule is a complex consisting of two cyclopentadienyl rings bound to a central iron atom. It is an orange solid with a camphor-like odor, that sublimes above room temperature, and is soluble in most organic solvents. It is remarkable for its stability: it is unaffected by air, water, strong bases, and can be heated to 400 °C without decomposition. In oxidizing conditions it can reversibly react with strong acids to form the ferrocenium cation Fe(C5H5)+2.

Europium(III) chloride Chemical compound

Europium(III) chloride is an inorganic compound with the formula EuCl3. The anhydrous compound is a yellow solid. Being hygroscopic it rapidly absorbs water to form a white crystalline hexahydrate, EuCl3·6H2O, which is colourless. The compound is used in research.

Iron(II) chloride Chemical compound

Iron(II) chloride, also known as ferrous chloride, is the chemical compound of formula FeCl2. It is a paramagnetic solid with a high melting point. The compound is white, but typical samples are often off-white. FeCl2 crystallizes from water as the greenish tetrahydrate, which is the form that is most commonly encountered in commerce and the laboratory. There is also a dihydrate. The compound is highly soluble in water, giving pale green solutions.

Titanocene dichloride Chemical compound

Titanocene dichloride is the organotitanium compound with the formula (η5-C5H5)2TiCl2, commonly abbreviated as Cp2TiCl2. This metallocene is a common reagent in organometallic and organic synthesis. It exists as a bright red solid that slowly hydrolyzes in air. It shows antitumour activity and was the first non-platinum complex to undergo clinical trials as a chemotherapy drug.

Cyclobutadieneiron tricarbonyl Chemical compound

Cyclobutadieneiron tricarbonyl is an organoiron compound with the formula Fe(C4H4)(CO)3. It is a yellow solid that is soluble in organic solvents. It has been used in organic chemistry as a precursor for cyclobutadiene, which is an elusive species in the free state.

Diiron nonacarbonyl Chemical compound

Diiron nonacarbonyl is an inorganic compound with the formula Fe2(CO)9. This metal carbonyl is an important reagent in organometallic chemistry and of occasional use in organic synthesis. It is a more reactive source of Fe(0) than Fe(CO)5 and less dangerous to handle because it is nonvolatile. This micaceous orange solid is virtually insoluble in all common solvents.

Organoactinide chemistry

Organoactinide chemistry is the science exploring the properties, structure and reactivity of organoactinide compounds, which are organometallic compounds containing a carbon to actinide chemical bond.

Lithium bis(trimethylsilyl)amide Chemical compound

Lithium bis(trimethylsilyl)amide is a lithiated organosilicon compound with the formula LiN(Si 3)2. It is commonly abbreviated as LiHMDS and is primarily used as a strong non-nucleophilic base and as a ligand. Like many lithium reagents, it has a tendency to aggregate and will form a cyclic trimer in the absence of coordinating species.

Group 2 organometallic chemistry

Group 2 organometallic chemistry refers to the chemistry of compounds containing carbon bonded to any group 2 element. By far the most common group 2 organometallic compounds are the magnesium-containing Grignard reagents which are widely used in organic chemistry. Other organmetallic group 2 compounds are rare and are typically limited to academic interests.

Organoiron chemistry is the chemistry of iron compounds containing a carbon-to-iron chemical bond. Organoiron compounds are relevant in organic synthesis as reagents such as iron pentacarbonyl, diiron nonacarbonyl and disodium tetracarbonylferrate. While iron adopts oxidation states from Fe(−II) through to Fe(VII), Fe(IV) is the highest established oxidation state for organoiron species. Although iron is generally less active in many catalytic applications, it is less expensive and "greener" than other metals. Organoiron compounds feature a wide range of ligands that support the Fe-C bond; as with other organometals, these supporting ligands prominently include phosphines, carbon monoxide, and cyclopentadienyl, but hard ligands such as amines are employed as well.

In organometallic chemistry, bent metallocenes are a subset of metallocenes. In bent metallocenes, the ring systems coordinated to the metal are not parallel, but are tilted at an angle. A common example of a bent metallocene is Cp2TiCl2. Several reagents and much research is based on bent metallocenes.

Metal acetylacetonates are coordination complexes derived from the acetylacetonate anion (CH
3
COCHCOCH
3
) and metal ions, usually transition metals. The bidentate ligand acetylacetonate is often abbreviated acac. Typically both oxygen atoms bind to the metal to form a six-membered chelate ring. The simplest complexes have the formula M(acac)3 and M(acac)2. Mixed-ligand complexes, e.g. VO(acac)2, are also numerous. Variations of acetylacetonate have also been developed with myriad substituents in place of methyl (RCOCHCOR′). Many such complexes are soluble in organic solvents, in contrast to the related metal halides. Because of these properties, acac complexes are sometimes used as catalyst precursors and reagents. Applications include their use as NMR "shift reagents" and as catalysts for organic synthesis, and precursors to industrial hydroformylation catalysts. C
5
H
7
O
2
in some cases also binds to metals through the central carbon atom; this bonding mode is more common for the third-row transition metals such as platinum(II) and iridium(III).

Decamethylferrocene Chemical compound

Decamethylferrocene or bis(pentamethylcyclopentadienyl)iron(II) is a chemical compound with formula Fe(C5(CH3)5)2 or C20H30Fe. It is a sandwich compound, whose molecule has an iron(II) cation Fe2+ attached by coordination bonds between two pentamethylcyclopentadienyl anions (Cp*, (CH3)5C−5). It can also be viewed as a derivative of ferrocene, with a methyl group replacing each hydrogen atom of its cyclopentadienyl rings. The name and formula are often abbreviated to DmFc, Me10Fc or FeCp*2.

Metal bis(trimethylsilyl)amides

Metal bis(trimethylsilyl)amides are coordination complexes composed of a cationic metal with anionic bis(trimethylsilyl)amide ligands and are part of a broader category of metal amides.

Transition metal alkyl complexes

Transition metal alkyl complexes are coordination complexes that contain a bond between a transition metal and an alkyl ligand. Such complexes are not only pervasive but are of practical and theoretical interest.

Transition-metal allyl complex

Transition-metal allyl complexes are coordination complexes with allyl and its derivatives as ligands. Allyl is the radical with the connectivity CH2CHCH2, although as a ligand it is usually viewed as an allyl anion CH2=CH−CH2, which is usually described as two equivalent resonance structures.

Biferrocene Organometallic compound

Biferrocene is the organometallic compound with the formula [(C5H5)Fe(C5H4)]2. It is the product of the formal dehydrocoupling of ferrocene, analogous the relationship between biphenyl and benzene. It is an orange, air-stable solid that is soluble in nonpolar organic solvents.

Iron(tetraphenylporphyrinato) chloride Chemical compound

Iron(tetraporphyriinato) chloride is the coordination complex with the formula Fe(TPP)Cl where TPP is the dianion [C44H28N4]2-. The compound forms blue microcrystals that dissolve in chlorinated solvent to give brown solutions. In terms of structure, the complex is five-coordinate with idealized C4v point group symmetry.

Transition metal isocyanide complexes

Transition metal isocyanide complexes are coordination compounds containing isocyanide ligands. Because isocyanide are relatively basic, but also good pi-acceptors, a wide range of complexes are known. Some isocyanide complexes are used in medical imaging.

References

  1. Churchill, Melvyn R.; Wormald, John (1969). "Crystal and molecular structure of bis(fulvalene)diiron". Inorganic Chemistry. 8 (9): 1970–1974. doi:10.1021/ic50079a030.
  2. Brüggeller, Peter; Jaitner, Peter; Schottenberger, Herwig (1991). "Kristallographische Gegenüberstellung der Monokationen von Bis(fulvalen)dieisien und Bis(fulvalen) Eisen-Cobalt mit Identischem Gegenion (PF6)". Journal of Organometallic Chemistry. 417 (3): C53–C58. doi:10.1016/0022-328X(91)80206-Y.
  3. Levanda, Carole; Bechgaard, Klaus; Cowan, Dwaine O.; Mueller-Westerhoff, Ulrich T.; Eilbracht, Peter; Candela, George A.; Collins, R. L. (1976). "Bis(fulvalene)diiron, Its Mono- and Dications. Intramolecular Exchange Interactions in a Rigid System". Journal of the American Chemical Society. 98 (11): 3181–3187. doi:10.1021/ja00427a021.