Brackish water

Last updated

Brackish water, sometimes termed brack water, [1] [2] is water occurring in a natural environment that has more salinity than freshwater, but not as much as seawater. It may result from mixing seawater (salt water) and fresh water together, as in estuaries, or it may occur in brackish fossil aquifers. The word comes from the Middle Dutch root brak . Certain human activities can produce brackish water, in particular civil engineering projects such as dikes and the flooding of coastal marshland to produce brackish water pools for freshwater prawn farming. Brackish water is also the primary waste product of the salinity gradient power process. Because brackish water is hostile to the growth of most terrestrial plant species, without appropriate management it is damaging to the environment (see article on shrimp farms).

Contents

Technically, brackish water contains between 0.5 and 30 grams of salt per litre—more often expressed as 0.5 to 30 parts per thousand (‰), which is a specific gravity of between 1.0004 and 1.0226. Thus, brackish covers a range of salinity regimes and is not considered a precisely defined condition. It is characteristic of many brackish surface waters that their salinity can vary considerably over space or time. Water with a salt concentration greater than 30‰ is considered saline. See the salinity table from the Wikipedia salinity article.

Brackish water habitats

Estuaries

A brackish water fish: Monodactylus argenteus Monodactylus argenteus.JPG
A brackish water fish: Monodactylus argenteus

Brackish water condition commonly occurs when fresh water meets seawater. In fact, the most extensive brackish water habitats worldwide are estuaries, where a river meets the sea.

The River Thames flowing through London is a classic river estuary. The town of Teddington a few miles west of London marks the boundary between the tidal and non-tidal parts of the Thames, although it is still considered a freshwater river about as far east as Battersea insofar as the average salinity is very low and the fish fauna consists predominantly of freshwater species such as roach, dace, carp, perch, and pike. The Thames Estuary becomes brackish between Battersea and Gravesend, and the diversity of freshwater fish species present is smaller, primarily roach and dace; euryhaline marine species such as flounder, European seabass, mullet, and smelt become much more common. Further east, the salinity increases and the freshwater fish species are completely replaced by euryhaline marine ones, until the river reaches Gravesend, at which point conditions become fully marine and the fish fauna resembles that of the adjacent North Sea and includes both euryhaline and stenohaline marine species. A similar pattern of replacement can be observed with the aquatic plants and invertebrates living in the river. [3] [4]

This type of ecological succession from freshwater to marine ecosystem is typical of river estuaries. River estuaries form important staging points during the migration of anadromous and catadromous fish species, such as salmon, shad and eels, giving them time to form social groups and to adjust to the changes in salinity. Salmon are anadromous, meaning they live in the sea but ascend rivers to spawn; eels are catadromous, living in rivers and streams, but returning to the sea to breed. Besides the species that migrate through estuaries, there are many other fish that use them as "nursery grounds" for spawning or as places young fish can feed and grow before moving elsewhere. Herring and plaice are two commercially important species that use the Thames Estuary for this purpose.

Estuaries are also commonly used as fishing grounds and as places for fish farming or ranching. [5] For example, Atlantic salmon farms are often located in estuaries, although this has caused controversy, because in doing so, fish farmers expose migrating wild fish to large numbers of external parasites such as sea lice that escape from the pens the farmed fish are kept in. [6]

Mangroves

Another important brackish water habitat is the mangrove swamp or mangal. Many, though not all, mangrove swamps fringe estuaries and lagoons where the salinity changes with each tide. Among the most specialised residents of mangrove forests are mudskippers, fish that forage for food on land, and archer fish, perch-like fish that "spit" at insects and other small animals living in the trees, knocking them into the water where they can be eaten. Like estuaries, mangrove swamps are extremely important breeding grounds for many fish, with species such as snappers, halfbeaks, and tarpon spawning or maturing among them. Besides fish, numerous other animals use mangroves, including such species as the saltwater crocodile, American crocodile, proboscis monkey, diamondback terrapin, and the crab-eating frog, Fejervarya cancrivora (formerly Rana cancrivora). Mangroves represent important nesting sites for numerous birds groups such as herons, storks, spoonbills, ibises, kingfishers, shorebirds and seabirds.

Although often plagued with mosquitoes and other insects that make them unpleasant for humans, mangrove swamps are very important buffer zones between land and sea, and are a natural defense against hurricane and tsunami damage in particular. [7]

The Sundarbans and Bhitarkanika Mangroves are two of the large mangrove forests in the world, both on the coast of the Bay of Bengal.

Brackish seas and lakes

Some seas and lakes are brackish. The Baltic Sea is a brackish sea adjoining the North Sea. Originally the Eridanos river system prior to the Pleistocene, since then it has been flooded by the North Sea but still receives so much freshwater from the adjacent lands that the water is brackish. As seawater is denser, the water in the Baltic is stratified, with seawater at the bottom and freshwater at the top. Limited mixing occurs because of the lack of tides and storms, with the result that the fish fauna at the surface is freshwater in composition while that lower down is more marine. Cod are an example of a species only found in deep water in the Baltic, while pike are confined to the less saline surface waters.

The Caspian Sea is the world's largest lake and contains brackish water with a salinity about one-third that of normal seawater. The Caspian is famous for its peculiar animal fauna, including one of the few non-marine seals (the Caspian seal) and the great sturgeons, a major source of caviar.

Hudson Bay is a brackish marginal sea of the Arctic Ocean, it remains brackish due its limited connections to the open ocean, very high levels freshwater surface runoff input from the large Hudson Bay drainage basin, and low rate of evaporation due to being completely covered in ice for over half the year.

In the Black Sea the surface water is brackish with an average salinity of about 17–18 parts per thousand compared to 30 to 40 for the oceans. [8] The deep, anoxic water of the Black Sea originates from warm, salty water of the Mediterranean.

Lake Texoma, a reservoir on the border between the U.S. states of Texas and Oklahoma, is a rare example of a brackish lake that is neither part of an endorheic basin nor a direct arm of the ocean, though its salinity is considerably lower than that of the other bodies of water mentioned here. The reservoir was created by the damming of the Red River of the South, which (along with several of its tributaries) receives large amounts of salt from natural seepage from buried deposits in the upstream region. The salinity is high enough that striped bass, a fish normally found only in salt water, has self-sustaining populations in the lake. [9] [10]

Brackish marsh

Other brackish bodies of water

Human uses

Brackish water is being used by humans in many different sectors. It is commonly used as cooling water for power generation and in a variety of ways in the mining, oil, and gas industries. Once desalinated it can also be used for agriculture, livestock, and municipal uses. [11] Brackish water can be treated using reverse osmosis, electrodialysis, and other filtration processes. [12]

See also

Related Research Articles

<span class="mw-page-title-main">Salinity</span> Proportion of salt dissolved in water

Salinity is the saltiness or amount of salt dissolved in a body of water, called saline water. It is usually measured in g/L or g/kg.

<span class="mw-page-title-main">Estuary</span> Partially enclosed coastal body of brackish water

An estuary is a partially enclosed coastal body of brackish water with one or more rivers or streams flowing into it, and with a free connection to the open sea. Estuaries form a transition zone between river environments and maritime environments and are an example of an ecotone. Estuaries are subject both to marine influences such as tides, waves, and the influx of saline water, and to fluvial influences such as flows of freshwater and sediment. The mixing of seawater and freshwater provides high levels of nutrients both in the water column and in sediment, making estuaries among the most productive natural habitats in the world.

<span class="mw-page-title-main">Wetland</span> Land area that is permanently, or seasonally saturated with water

A wetland is a distinct ecosystem that is flooded or saturated by water, either permanently for years or decades or seasonally for a shorter periods. Flooding results in oxygen-free anoxic processes prevailing, especially in the soils. The primary factor that distinguishes wetlands from terrestrial land forms or water bodies is the characteristic vegetation of aquatic plants, adapted to the unique anoxic hydric soils. Wetlands are considered among the most biologically diverse of all ecosystems, serving as home to a wide range of plant and animal species. Methods for assessing wetland functions, wetland ecological health, and general wetland condition have been developed for many regions of the world. These methods have contributed to wetland conservation partly by raising public awareness of the functions some wetlands provide. Constructed wetlands are designed and built to treat municipal and industrial wastewater as well as to divert stormwater runoff. Constructed wetlands may also play a role in water-sensitive urban design.

<span class="mw-page-title-main">Bull shark</span> Species of fish

The bull shark, also known as the Zambezi shark in Africa and Lake Nicaragua shark in Nicaragua, is a species of requiem shark commonly found worldwide in warm, shallow waters along coasts and in rivers. It is known for its aggressive nature, and presence mainly in warm, shallow brackish and freshwater systems including estuaries and (usually) lower reaches of rivers. This aggressive nature is a reason for its population being listed as vulnerable on the IUCN Red List. Shark-culling occurs near beaches to protect beachgoers, which is one of the causes of bull shark populations continuing to decrease.

<span class="mw-page-title-main">Sailfin molly</span> Species of fish

The sailfin molly is a livebearer fish typically found in both freshwater and brackish waterways along the East Coast of the United States, from North Carolina south to Florida, and around the Gulf of Mexico to Texas, and south to the Yucatán Peninsula of México. Given their preference for more brackish water conditions, mollies are often found within just a few yards or miles of the ocean, inhabiting coastal estuaries, lagoons, river deltas and swamps, as well as tidal areas with a regular inflow of oceanic minerals and nutrients mixing with inland freshwater sources.

<span class="mw-page-title-main">Thames Estuary</span> Estuary in which the River Thames meets the waters of the North Sea

The Thames Estuary is where the River Thames meets the waters of the North Sea, in the south-east of Great Britain.

<span class="mw-page-title-main">Aquatic ecosystem</span> Ecosystem in a body of water

An aquatic ecosystem is an ecosystem found in and around a body of water, in contrast to land-based terrestrial ecosystems. Aquatic ecosystems contain communities of organisms—aquatic life—that are dependent on each other and on their environment. The two main types of aquatic ecosystems are marine ecosystems and freshwater ecosystems. Freshwater ecosystems may be lentic ; lotic ; and wetlands.

Euryhaline organisms are able to adapt to a wide range of salinities. An example of a euryhaline fish is the short-finned molly, Poecilia sphenops, which can live in fresh water, brackish water, or salt water.

<span class="mw-page-title-main">Marine ecosystem</span> Ecosystem in saltwater environment

Marine ecosystems are the largest of Earth's aquatic ecosystems and exist in waters that have a high salt content. These systems contrast with freshwater ecosystems, which have a lower salt content. Marine waters cover more than 70% of the surface of the Earth and account for more than 97% of Earth's water supply and 90% of habitable space on Earth. Seawater has an average salinity of 35 parts per thousand of water. Actual salinity varies among different marine ecosystems. Marine ecosystems can be divided into many zones depending upon water depth and shoreline features. The oceanic zone is the vast open part of the ocean where animals such as whales, sharks, and tuna live. The benthic zone consists of substrates below water where many invertebrates live. The intertidal zone is the area between high and low tides. Other near-shore (neritic) zones can include mudflats, seagrass meadows, mangroves, rocky intertidal systems, salt marshes, coral reefs, lagoons. In the deep water, hydrothermal vents may occur where chemosynthetic sulfur bacteria form the base of the food web.

<span class="mw-page-title-main">Crab-eating frog</span> Species of amphibian

The crab-eating frog is a frog native to south-eastern Asia including Taiwan, China, Sumatra in Indonesia, the Philippines and more rarely as far west as Orissa in India. It has also been introduced to Guam, most likely from Taiwan. It inhabits mangrove swamps and marshes and is one of 144 known modern amphibians which can tolerate brief excursions into seawater, and is possibly the only extant marine amphibian.

<span class="mw-page-title-main">Stenohaline</span> Term describing organisms that cannot tolerate a wide range of salinities

Stenohaline describes an organism, usually fish, that cannot tolerate a wide fluctuation in the salinity of water. Stenohaline is derived from the words: "steno" meaning narrow, and "haline" meaning salt. Many fresh water fish, such as goldfish, tend to be stenohaline and die in environments of high salinity such as the ocean. Many marine fish, such as haddock, are also stenohaline and die in water with lower salinity.

<span class="mw-page-title-main">Brackish-water aquarium</span>

A brackish-water aquarium is an aquarium where the water is brackish (semi-salty). The range of "saltiness" varies greatly, from near freshwater to near marine and is often referred to as specific gravity (SG) or salinity. Brackish water aquaria is a popular specialization within the fishkeeping hobby. Many species of fish traded as freshwater species are actually true brackish species, for example mollies, Florida flagfish, and some cichlids such as chromides and black-chin tilapia. There are also several popular species traded purely as brackish water fish, including monos, scats, archerfish, and various species of pufferfish, goby, flatfish, and gar. Generally, aquarists need to maintain a specific gravity of around 1.005 to 1.010 depending on the species being kept, but practically all brackish water fish tolerate variations in salinity well, and some aquarists maintain that regularly fluctuating the salinity in the aquarium actually keeps the fish healthy and free of parasites.

<span class="mw-page-title-main">Wildlife of the Gambia</span>

The wildlife of the Gambia is dictated by several habitat zones over the Gambia's land area of about 10,000 km2. It is bound in the south by the savanna and on the north by the Sudanian woodlands. The habitats host abundant indigenous plants and animals, in addition to migrant species and newly planted species. They vary widely and consist of the marine system, coastal zone, estuary with mangrove vegetation coupled with Banto Faros, river banks with brackish and fresh water zones, swamps covered with forests and many wetlands.

<span class="mw-page-title-main">Brackish marsh</span> Marsh with brackish level of salinity

Brackish marshes develop from salt marshes where a significant freshwater influx dilutes the seawater to brackish levels of salinity. This commonly happens upstream from salt marshes by estuaries of coastal rivers or near the mouths of coastal rivers with heavy freshwater discharges in the conditions of low tidal ranges.

Classification of wetlands has been a problematical task, with the commonly accepted definition of what constitutes a wetland being among the major difficulties. A number of national wetland classifications exist. In the 1970s, the Ramsar Convention on Wetlands of International Importance introduced a first attempt to establish an internationally acceptable wetland classification scheme.

<span class="mw-page-title-main">Coastal fish</span> Fish that inhabit the sea between the shoreline and the edge of the continental shelf

Coastal fish, also called inshore fish or neritic fish, inhabit the sea between the shoreline and the edge of the continental shelf. Since the continental shelf is usually less than 200 metres (660 ft) deep, it follows that pelagic coastal fish are generally epipelagic fish, inhabiting the sunlit epipelagic zone. Coastal fish can be contrasted with oceanic fish or offshore fish, which inhabit the deep seas beyond the continental shelves.

Estuarine water circulation is controlled by the inflow of rivers, the tides, rainfall and evaporation, the wind, and other oceanic events such as an upwelling, an eddy, and storms. Estuarine water circulation patterns are influenced by vertical mixing and stratification, and can affect residence time and exposure time.

<span class="mw-page-title-main">Marine habitat</span> Habitat that supports marine life

A marine habitat is a habitat that supports marine life. Marine life depends in some way on the saltwater that is in the sea. A habitat is an ecological or environmental area inhabited by one or more living species. The marine environment supports many kinds of these habitats.

An anchialine system is a landlocked body of water with a subterranean connection to the ocean. Depending on its formation, these systems can exist in one of two primary forms: pools or caves. The primary differentiating characteristics between pools and caves is the availability of light; cave systems are generally aphotic while pools are euphotic. The difference in light availability has a large influence on the biology of a given system. Anchialine systems are a feature of coastal aquifers which are density stratified, with water near the surface being fresh or brackish, and saline water intruding from the coast at depth. Depending on the site, it is sometimes possible to access the deeper saline water directly in the anchialine pool, or sometimes it may be accessible by cave diving.

References

  1. "What is brackish water and what effect does a high concentration of ammonia have?". The Laboratory People. 15 June 2012. Retrieved 21 November 2020.
  2. Klaassen, K.; Bormann, H.; Klenke, T.; Liebezeit, G. (2008). "The impact of hydrodynamics and texture on the infiltration of rain and marine waters into sand bank island sediments — Aspects of infiltration and groundwater dynamics". Senckenbergiana Maritima. 38 (2). Springer Science and Business Media LLC: 163–171. doi:10.1007/bf03055293. ISSN   0080-889X. S2CID   6229273.
  3. The River Thames – its geology, geography and vital statistics from source to sea Archived 2010-05-16 at the Wayback Machine , The-River-Thames.co.uk
  4. The River Thames – its natural history Archived 2006-08-18 at the Wayback Machine The-River-Thames.co.uk
  5. "Tropical Aquaculture". www.eattilapia.com. Archived from the original on September 29, 2010.
  6. "脱毛の口コミまとめ". saveourseatrout.com. Archived from the original on 2006-07-17.
  7. Mangrove forests 'can reduce impact of tsunamis' Archived 2006-06-18 at the Wayback Machine , Science and Development Network, December 30, 2004
  8. Lüning, Klaus (1991-01-16). Seaweeds: Their Environment, Biogeography, and Ecophysiology. John Wiley & Sons. p. 121. ISBN   978-0-471-62434-9. OL   7619451M.
  9. Malewitz, Jim (21 November 2013). "Communities Along Red River Seek Feds' Help." The Texas Tribune. Retrieved 25 December 2018.
  10. U.S. Geological Survey Fact Sheet 170-97. Retrieved 25 December 2018.
  11. Program, USGS - U.S. Geological Survey Water Availability and Use Science. "How is Brackish Groundwater Being Used? - USGS National Brackish Groundwater Assessment". water.usgs.gov. Retrieved 2022-03-08.
  12. Ahdab, Yvana D.; Lienhard, John H. (2020), "Desalination of brackish groundwater to improve water quality and water supply", Prof. Lienhard, Elsevier, hdl:1721.1/126566, ISBN   978-0-12-818172-0 , retrieved 2022-03-08

Further reading