Branchiostoma lanceolatum

Last updated

Branchiostoma lanceolatum
Branchiostoma lanceolatum.jpg
Branchiostoma lanceolatum
Scientific classification OOjs UI icon edit-ltr.svg
Domain: Eukaryota
Kingdom: Animalia
Phylum: Chordata
Class: Leptocardii
Order: Amphioxiformes
Family: Branchiostomatidae
Genus: Branchiostoma
Species:
B. lanceolatum
Binomial name
Branchiostoma lanceolatum
(Pallas, 1774) [1] [2]
Synonyms [1]
  • Limax lanceolatus Pallas, 1774
  • Branchiostoma lubricum Costa, 1834
  • Amphioxus lanceolatus Yarrel, 1836
  • Branchiostoma haecklii Franz, 1922

Branchiostoma lanceolatum, the European lancelet or Mediterranean amphioxus, is a lancelet in the subphylum Cephalochordata. It is a marine invertebrate with a notochord but no backbone and is used as a model organism to study the evolutionary development of vertebrates. [3]

Contents

Anatomy

Anatomical diagram of Branchiostoma lanceolatum BranchiostomaLanceolatum PioM.svg
Anatomical diagram of Branchiostoma lanceolatum

Branchiostoma lanceolatum has an elongated body, flattened laterally and pointed at both ends. A stiffening rod of tightly packed cells, the notochord, extends the whole length of the body. Unlike vertebrates, the notochord persists in the adult, in form of simple dorsal neural tube slightly thickened in the anterior part (the cerebral vesicle). Above it is a nerve cord with a single frontal eye. The mouth is on the underside of the body and is surrounded by a tuft of 20 or 30 cirri or slender sensory appendages. The gut runs just below the notochord from the mouth to the anus, in front of the tail. There is a flap-like, vertical fin surrounding the pointed tail. Gas exchange takes place as water passes through gill slits in the mid region, and segmented gonads lie just behind these. The animal is pearly white and semi-transparent which enables the internal organs to be seen from outside. Its appearance is similar to a "primitive fish". It can grow up to 6 cm (2.5 in) long. [4] [5]

Distribution and habitat

Branchiostoma lanceolatum is found in shallow seas in the north-east Atlantic Ocean, from 67°N in Norway south to the Mediterranean Sea and east to the Black Sea. Its range has expanded through the Suez Canal to the northerly parts of the Indian Ocean and the coasts of East Africa. It burrows in soft substrates such as sand, gravel and shell fragments and is quite particular as to the size of the particles. It occurs from the low tide mark down to about 40 metres (130 ft). [5]

Biology

In the North Sea, breeding takes place in June and July. The mature adult Branchiostoma lanceolatum, aged 2 to 3 years, congregate in masses on the sea floor. Individuals are either male or female and spawn once a year. The eggs are laid and fertilisation takes place externally. The early larval stages take place in the substrate but a little later, the larvae become pelagic. They are elongated and flattened laterally and have a swollen region around the gill slits. These slits number 6 to 19, the number increasing as the larva passes through its various stages. The larvae have a vertical daily migration. Each evening they rise to near the surface of the sea and in the morning they sink through the water column, feeding on phytoplankton, copepods and detritus as they descend. While in these surface waters they drift with the current. The larval stage lasts for up to 200 days. [5] Toll-like receptors (TLR's) act as important mediators of the inflammatory pathways for creating an innate immune response in chordates. Data has demonstrated evidence that amphioxus TLRs maintained a similar framework as it pertains to protein structure, while also demonstrating similar features to TLRs of invertebrates despite their lineage. In short, TLRS in amphioxus propose a paraphyletic relationship with the vertebrate TLR lineage. [6]

Research

The mitochondrial genome of Branchiostoma lanceolatum has been sequenced, [7] [4] and the species serves as a model organism for studying the development of vertebrates. The way the coding genes and the two rRNA genes are organised is the same as the organisational method used by the sea lamprey (Petromyzon marinus). These data, among others, suggest a close relationship between Branchiostoma lanceolatum and the vertebrates. [7]

Adults can be induced to spawn in the laboratory with a thermal shock several times per year. Metamorphosis in the lab takes place in 1 to 3 months. [4] Since 2015, a merged effort from different labs working on this species, the Amphiencode consortium, provides a centralized platform on which genomic data is publicly accessible. [8]

Related Research Articles

<span class="mw-page-title-main">Chordate</span> Phylum of animals having a dorsal nerve cord

A chordate is a deuterostomic animal belonging to the phylum Chordata. All chordates possess, at some point during their larval or adult stages, five distinctive physical characteristics (synapomorphies) that distinguish them from other taxa. These five synapomorphies are a notochord, a hollow dorsal nerve cord, an endostyle or thyroid, pharyngeal slits, and a post-anal tail. The name "chordate" comes from the first of these synapomorphies, the notochord, which plays a significant role in chordate body plan structuring and movements. Chordates are also bilaterally symmetric, have a coelom, possess an enclosed circulatory system, and exhibit metameric segmentation.

<span class="mw-page-title-main">Craniate</span> Clade of chordates, member of the Craniata

A craniate is a member of the Craniata, a proposed clade of chordate animals with a skull of hard bone or cartilage. Living representatives are the Myxini (hagfishes), Hyperoartia, and the much more numerous Gnathostomata. Formerly distinct from vertebrates by excluding hagfish, molecular and anatomical research in the 21st century has led to the reinclusion of hagfish as vertebrates, making living craniates synonymous with living vertebrates.

<span class="mw-page-title-main">Tunicate</span> Marine animals, subphylum of chordates

A tunicate is a marine invertebrate animal, a member of the subphylum Tunicata. It is part of the Chordata, a phylum which includes all animals with dorsal nerve cords and notochords. The subphylum was at one time called Urochordata, and the term urochordates is still sometimes used for these animals. They are the only chordates that have lost their myomeric segmentation, with the possible exception of the 'seriation of the gill slits'. However, doliolids still display segmentation of the muscle bands.

<span class="mw-page-title-main">Notochord</span> Flexible rod-shaped structure in all chordates

In zoology and developmental anatomy, the notochord is an elastic rod-like structure found in many deuterostomal animals. Any species that has a notochord at any stage of its life cycle is, by definition, a chordate.

<span class="mw-page-title-main">Paleozoology</span> Branch of paleontology, paleobiology, or zoology

Palaeozoology, also spelled as Paleozoology, is the branch of paleontology, paleobiology, or zoology dealing with the recovery and identification of multicellular animal remains from geological contexts, and the use of these fossils in the reconstruction of prehistoric environments and ancient ecosystems.

<i>Pikaia</i> Extinct genus of primitive chordates

Pikaia gracilens is an extinct, primitive chordate animal known from the Middle Cambrian Burgess Shale of British Columbia. Described in 1911 by Charles Doolittle Walcott as an annelid, and in 1979 by Harry B. Whittington and Simon Conway Morris as a chordate, it became the "one of the most famous early chordate fossils," or "famously known as the earliest described Cambrian chordate". It is estimated to have lived during the latter period of the Cambrian explosion. Since its initial discovery, more than a hundred specimens have been recovered.

<span class="mw-page-title-main">Cephalochordate</span> Subphylum of lancelets

A cephalochordate is an animal in the chordate subphylum Cephalochordata. Cephalochordates are commonly called lancelets, and possess 5 synapomorphies, or primary characteristics, that all chordates have at some point during their larval or adulthood stages. These 5 synapomorphies are a notochord, dorsal hollow nerve cord, endostyle, pharyngeal slits, and a post-anal tail. The fine structure of the cephalochordate notochord is best known for the Bahamas lancelet, Asymmetron lucayanum. Cephalochordates are represented in modern oceans by the Amphioxiformes and are commonly found in warm temperate and tropical seas worldwide. With the presence of a notochord, adult amphioxus are able to swim and tolerate the tides of coastal environments, but they are most likely to be found within the sediment of these communities.

<span class="mw-page-title-main">Lancelet</span> Order of chordates

The lancelets, also known as amphioxi, consist of some 30 to 35 species of "fish-like" benthic filter feeding chordates in the order Amphioxiformes. They are modern representatives of the subphylum Cephalochordata. Lancelets closely resemble 530-million-year-old Pikaia, fossils of which are known from the Burgess Shale. However, according to phylogenetic analysis, the lancelet group itself probably evolved around the Cretaceous, 97.7 million years ago for Pacific species and 112 million years ago for Atlantic species. Palaeobranchiostoma from the Permian may be part of the fossil record of lancelets; however, due to poor preservation, some doubt about its nature remains. Zoologists are interested in them because they provide evolutionary insight into the origins of vertebrates. Lancelets contain many organs and organ systems that are closely related to those of modern fish, but in a more primitive form. Therefore, they provide a number of examples of possible evolutionary exaptation. For example, the gill-slits of lancelets are used for feeding only, and not for respiration. The circulatory system carries food throughout their body, but does not have red blood cells or hemoglobin for transporting oxygen. Lancelet genomes hold clues about the early evolution of vertebrates: by comparing genes from lancelets with the same genes in vertebrates, changes in gene expression, function and number as vertebrates evolved can be discovered. The genome of a few species in the genus Branchiostoma have been sequenced: B. floridae,B. belcheri, and B. lanceolatum.

<span class="mw-page-title-main">Acorn worm</span> Class of hemichordate invertebrates

The acorn worms or Enteropneusta are a hemichordate class of invertebrates consisting of one order of the same name. The closest non-hemichordate relatives of the Enteropneusta are the echinoderms. There are 111 known species of acorn worm in the world, the main species for research being Saccoglossus kowalevskii. Two families—Harrimaniidae and Ptychoderidae—separated at least 370 million years ago.

Myomeres are blocks of skeletal muscle tissue arranged in sequence, commonly found in aquatic chordates. Myomeres are separated from adjacent myomeres by connective fascia (myosepta) and most easily seen in larval fishes or in the olm. Myomere counts are sometimes used for identifying specimens, since their number corresponds to the number of vertebrae in the adults. Location varies, with some species containing these only near the tails, while some have them located near the scapular or pelvic girdles. Depending on the species, myomeres could be arranged in an epaxial or hypaxial manner. Hypaxial refers to ventral muscles and related structures while epaxial refers to more dorsal muscles. The horizontal septum divides these two regions in vertebrates from cyclostomes to gnathostomes. In terrestrial chordates, the myomeres become fused as well as indistinct, due to the disappearance of myosepta.

<span class="mw-page-title-main">Marine invertebrates</span> Marine animals without a vertebrate column

Marine invertebrates are the invertebrates that live in marine habitats. Invertebrate is a blanket term that includes all animals apart from the vertebrate members of the chordate phylum. Invertebrates lack a vertebral column, and some have evolved a shell or a hard exoskeleton. As on land and in the air, marine invertebrates have a large variety of body plans, and have been categorised into over 30 phyla. They make up most of the macroscopic life in the oceans.

<span class="mw-page-title-main">Lamprey</span> Order of vertebrates, the cyclostomes

Lampreys are an ancient extant lineage of jawless fish of the order Petromyzontiformes, placed in the superclass Cyclostomata. The adult lamprey may be characterized by a toothed, funnel-like sucking mouth. The common name "lamprey" is probably derived from Latin lampetra, which may mean "stone licker", though the etymology is uncertain. Lamprey is sometimes seen for the plural form.

<i>Branchiostoma</i> Genus of lancelets

Branchiostoma is one of the few living genera of lancelets. It is the type genus of family Branchiostomatidae.

Branchiostoma floridae, the Florida lancelet, is a lancelet of the genus Branchiostoma. The genome of this species has been sequenced, revealing that among the chordates, the morphologically simpler tunicates are actually more closely related to vertebrates than lancelets. An embryo of a Florida amphioxus has a larval pharynx with gill slits that is asymmetrical. The gill slits in the larval pharynx form in the center of the embryo when it is in its earliest stage of development (primordial) meaning the thick layer of endoderm is overlapped by a thin layer; which aids into making the B. floridae asymmetrical from left to right. The lancelet Branchiostoma floridae maintains a high level of Fox transcription factor gene diversity, with 32 distinct Fox genes in its genome, and 21,229 clusters of cDNA clones, making it very useful to the research community.

<i>Platynereis dumerilii</i> Species of annelid worm

Platynereis dumerilii is a species of annelid polychaete worm. It was originally placed into the genus Nereis and later reassigned to the genus Platynereis. Platynereis dumerilii lives in coastal marine waters from temperate to tropical zones. It can be found in a wide range from the Azores, the Mediterranean, in the North Sea, the English Channel, and the Atlantic down to the Cape of Good Hope, in the Black Sea, the Red Sea, the Persian Gulf, the Sea of Japan, the Pacific, and the Kerguelen Islands. Platynereis dumerilii is today an important lab animal, it is considered as a living fossil, and it is used in many phylogenetic studies as a model organism.

In biology, solenocytes are elongated, flagellated cells commonly found in lower invertebrates, such as flatworms, as well as in chordates and several other animal species. In terms of function, solenocytes play a significant role in the excretory systems of their host organism(s). For example, the lancelets, also referred to as amphioxus, utilize solenocytic protonephridia to perform excretion. In addition to excretion, these cells contribute to ion regulation and osmoregulation. With this in mind, solenocytes form subtypes of protonephridium and are often compared to another specialized excretory cell type, i.e., flame cells. Solenocytes have flagella, while flame cells are generally ciliated.

<span class="mw-page-title-main">MirGeneDB</span>

MirGeneDB is a database of manually curated microRNA genes that have been validated and annotated as initially described in Fromm et al. 2015 and Fromm et al. 2020. MirGeneDB 2.1 includes more than 16,000 microRNA gene entries representing more than 1,500 miRNA families from 75 metazoan species and published in the 2022 NAR database issue. All microRNAs can be browsed, searched and downloaded.

<i>Amphiodia occidentalis</i> Species of brittle star

Amphiodia occidentalis or long-armed brittle star is a species of brittle star belonging to the family Amphiuridae. It is found in the Eastern Pacific coast from Alaska to USA, often on the seafloor within intertidal and subtidal zones. Within these areas, it is often found buried a few centimeters under the sand with 2 or 3 arms extending through the surface.

Linda Zimmerman Holland is a research biologist at Scripps Institution of Oceanography known for her work examining the evolution of vertebrates.

Amphioxus or lancelets (Branchiostoma) are members of the Chordata phylum of which all members have a notochord at some point while they are alive. B. belcheri have a notochord, dorsal nerve cord, pharynx, buccal cavity, cirri, tail, dorsal fin, nerve cord, segmented muscle, and ocelli. They are distinguishable by a slightly round dorsal fin, eighty slender preanal fin-chambers, narrow caudal fin, and obtuse angles between fins. They obtain food by filter feeding. They were first reported in 1897 near the Amakusa Islands, specifically off Goshonoura Island, south of Amakusa-Kamishima Island. These islands are located on the west coast of Kyushu, the island furthest south of the four main isles of Japan. In addition to the location of the siting, information regarding reproductive period and morphology was also obtained. B. belcheri are gonochoric, reproducing via external fertilization. B. belcheri are an endangered species, threatened by the influx of pollutants of land-based origin into the sea such as cleaning agents, chemical waste, garbage, mining waste, pesticides, petroleum products, and sewage.

References

  1. 1 2 Branchiostoma lanceolatum (Pallas, 1774) World Register of Marine Species. Retrieved 2011-11-14.
  2. "Archived copy" (PDF). Archived from the original (PDF) on 2015-05-21. Retrieved 2015-05-20.{{cite web}}: CS1 maint: archived copy as title (link)
  3. Theodosiou, M.; Colin, A.; Schulz, J.; Laudet, V.; Peyrieras, N.; Nicolas, J. F. O.; Schubert, M.; Hirsinger, E. (2011). "Amphioxus spawning behavior in an artificial seawater facility". Journal of Experimental Zoology Part B: Molecular and Developmental Evolution. 316B (4): 263–275. doi:10.1002/jez.b.21397. PMID   21271675.
  4. 1 2 3 "The Mediterranean amphioxus, Branchiostoma lanceolatum, an emergent animal model for Evo-Devo studies" (PDF). Archived from the original (PDF) on 2012-04-17. Retrieved 2011-11-15.
  5. 1 2 3 Branchiostoma lanceolatum Marine Species Information Portal. Retrieved 2011-11-14.
  6. Ji, Jie; Ramos-Vicente, David; Navas-Pérez, Enrique; Herrera-Úbeda, Carlo (2018). "Characterization of the TLR Family in Branchiostoma lanceolatum and Discovery of a Novel TLR22-Like Involved in dsRNA Recognition in Amphioxus". Frontiers in Immunology. 9 (2525): 1–15. doi: 10.3389/fimmu.2018.02525 . PMC   6224433 . PMID   30450099.
  7. 1 2 Spruyt, Nathalie; Christiane Delarbre; Gabriel Gachelin; Vincent Laudet (1998). "Complete sequence of the amphioxus (Branchiostoma lanceolatum) mitochondrial genome: relations to vertebrates". Nucleic Acids Research . 26 (13): 3279–3285. doi:10.1093/nar/26.13.3279. PMC   147690 . PMID   9628930.
  8. "Amphiencode". 2015-12-02. Retrieved 2019-02-07.