Brettstapel

Last updated
Brettstapel Brettstapel.jpg
Brettstapel

Brettstapel, also known as dowellam, [1] is a massive timber construction system, fabricated exclusively from softwood timber posts connected with hardwood timber dowels. It is a relatively simple method of construction that exploits low grade timber, not normally suitable for use in construction, to form load bearing solid timber wall, floor and roof panels.

Contents

Brettstapel works by using hardwood dowels with a moisture content lower than that of softwood posts. Over time the dowels expand to achieve moisture equilibrium thus 'locking' the posts together and creating a structural load-bearing system.

It is one of a few construction methods that can be entirely fabricated from timber. Although some variations do still use glue and nails, these are not necessary and avoiding these means a healthier indoor air quality can be achieved. The timber itself locks in vast amounts of carbon dioxide without emitting harmful toxins found in other materials, benefiting both the user and the environment.

History

Types of Brettstapel Construction Types of Brettstapel Construction.jpg
Types of Brettstapel Construction

Brettstapel was invented in the 1970s by the German engineer Julius Natterer. [2] It is now commonly used across Austria, Switzerland and Germany, whilst slowly emerging in the UK. Originally it consisted of low grade timber posts continuously nailed together to form panels strong enough to support mines and railways. In 1999 a German company developed a doweled system which relied on the varying moisture content to form solid structural panels however many companies introduced glue to the system to strengthen it. In 2001, a new variant of Brettstapel was developed where diagonal dowels replaced the perpendicular ones thus resolving separation issues and allowing for longer spans. Presently only one company uses the diagonal dowel system whilst all except for two (who still use nails) use perpendicular dowels, mostly without glue. There are now a range of companies producing CLT cross laminated timber (rotating layers of boards) using timber dowels based upon Brettstapel. [3]

Manufacture

Acharacle Primary School Exposed Brettstapel Acharacle Primary School Exposed Brettstapel.jpg
Acharacle Primary School Exposed Brettstapel

Throughout the development of Brettstapel, low grade wood (predominantly spruce or fir) has remained the choice raw material for the posts where-as beech is more often used for the dowels. By ensuring natural defects, such as knots in the wooden posts are not adjacent to each other, poor quality timber can be utilised which makes for a highly economical way of using a fast-growing, underused resource, of which the UK and Scotland in particular, has an abundance.

Brettstapel is manufactured to three quality grades depending on how visible the final product will be: Industrial, Standard and Exposed. [4] With this in mind, the most rudimentary solution is to use unfinished timber where the panels are to be covered. Alternatively, the posts can be planed, chamfered and profiled to give a highly aesthetic finish and further still, the posts can be altered with hollow voids along the edge to enhance the acoustic performance. Brettstapel can also be combined with concrete and steel to form composite structures for more demanding projects such as large spans, bridges and trusses.

Application

Brettstapel is commonly produced as part of a prefabricated wall, ceiling or roof panel. The prefabrication takes place in dedicated factories using specialist machinery and an experienced team ensuring tight quality control and fast construction.

The structural panels are generally manufactured in 600mm wide sections, secured together using timber joints and further combined with sheathing board, insulation, and a vapour barrier to form the completed panels. Structural openings are incorporated into the panels, and in some cases plumbing and electrical fittings can be too, whilst the external finish commonly varies between render and timber cladding which is applied on-site.

Brettstapel Wall Panel Brettstapel Wall Panel.jpg
Brettstapel Wall Panel

This high degree of prefabrication means buildings can be manufactured and erected extremely quickly and efficiently. It takes approximately five weeks from cutting dried timber to completing the fit-out of a house, whilst a house can be erected on site and made weather tight in a matter of days.

Structurally, manufacturers can produce panels up to 12–15 metres in length, although a 7metre span is more readily achievable with a 210-250mm deep panel. Brettstapel trusses can be made to span more demanding distances, such as those required in large industrial units and bridges.

The tallest building to use Brettstapel panels is currently the “E3” building in Germany at seven storeys tall. [5] Although this incorporates other timber elements, four storey buildings have been erected solely using Brettstapel for the structure. Fire regulations currently limit the height of a timber building, however these are being challenged by the massive timber systems and taller examples are emerging; a typical 120mm panel has a 60 minute rating whilst complete structural panels can achieve 90 minute ratings which more than matches concrete and steel construction methods.

Contemporary Brettstapel construction is also employed in the IBA Soft House in Hamburg, Germany. Whereas the timber skeleton of the E3 building is obscured by plaster, the Brettstapel panels in the Soft House are exposed on the interior floors, walls, and ceilings. The building was then clad in layers of mineral wool insulation, a water barrier, and a larch wood rainscreen to ensure stability against the elements. [6]

Benefits

British Industry

Industrial Grade Brettstapel Industrial Grade Brettstapel.jpg
Industrial Grade Brettstapel

Brettstapel projects are starting to be realised in the UK, Acharacle Primary School in Scotland being the first and setting a fitting precedent for others to follow. Some private and public housing projects are also being built in the Scottish borders and in London. Plummerswood Active House in the Scottish Borders has received the Scottish Home Award for Architectural Excellence 2012.

Currently Brettstapel is predominantly manufactured in Austria, Switzerland, Germany and Norway which has a negative effect on British users, due to increased transportation costs and a subsequently a higher embodied energy. British architects and clients are however slowly starting to use massive timber systems more frequently, but for all the benefits this brings, the British timber industry has been missing out.

However as of Spring 2013 In-Wood Developments in EastSussex is believed to be the first UK manufacturer of Brettstapel Panels in the UK, bringing this construction opportunity to the UK market on a more competitive basis. The first showing of these UK manufactured panels was made at Ecobuild 2013.

Scotland produces the majority of UK timber, 65% of which is used for woodchips, fencing, packaging and sawdust, [8] this is timber that could be used in Brettstapel construction. British grown Sitka spruce is an ideal raw material to use for Brettstapel as it is a low coat timber that grows quickly and accounts for approximately third of all timber in the UK. [9] If enough interest is generated, it is possible to conceive that the industry will soon have an incentive to produce more Brettstapel in the UK using Sitka spruce; this would be a highly profitable use of a resource that is currently predominantly used for cheaper products.

Increasing the use of British timber will have huge ecological and economical benefits to the global environment and to British industries. Ultimately however, specifying Brettstapel within the UK will contribute towards a higher quality of construction; a higher standard of living; an improved environment and towards the increased health and well-being of future occupants.

Related Research Articles

<span class="mw-page-title-main">Nail (fastener)</span> Sharp object of hard metal used as a fastener

In woodworking and construction, a nail is a small object made of metal which is used as a fastener, as a peg to hang something, or sometimes as a decoration. Generally, nails have a sharp point on one end and a flattened head on the other, but headless nails are available. Nails are made in a great variety of forms for specialized purposes. The most common is a wire nail. Other types of nails include pins, tacks, brads, spikes, and cleats.

<span class="mw-page-title-main">Lumber</span> Wood that has been processed into beams and planks

Lumber is wood that has been processed into uniform and useful sizes, including beams and planks or boards. Lumber is mainly used for construction framing, as well as finishing. Lumber has many uses beyond home building. Lumber is referred to as timber in the United Kingdom, Europe, Australia, and New Zealand, while in other parts of the world the term timber refers specifically to unprocessed wood fiber, such as cut logs or standing trees that have yet to be cut.

<span class="mw-page-title-main">Plywood</span> Manufactured wood panel made from thin sheets of wood veneer

Plywood is a composite material manufactured from thin layers, or "plies", of wood veneer that are glued together with adjacent layers, having both glued with each other at right angle or at 90 degrees angle. It is an engineered wood from the family of manufactured boards, which include plywood, medium-density fibreboard (MDF), oriented strand board (OSB), and particle board.

<span class="mw-page-title-main">Joinery</span> Where pieces of wood are fixed together in an assembly

Joinery is a part of woodworking that involves joining pieces of wood, engineered lumber, or synthetic substitutes, to produce more complex items. Some woodworking joints employ mechanical fasteners, bindings, or adhesives, while others use only wood elements.

<span class="mw-page-title-main">Engineered wood</span> Range of derivative wood products engineered for uniform and predictable structural performance

Engineered wood, also called mass timber, composite wood, human-made wood, or manufactured board, includes a range of derivative wood products which are manufactured by binding or fixing the strands, particles, fibres, or veneers or boards of wood, together with adhesives, or other methods of fixation to form composite material. The panels vary in size but can range upwards of 64 by 8 feet and in the case of cross-laminated timber (CLT) can be of any thickness from a few inches to 16 inches (410 mm) or more. These products are engineered to precise design specifications, which are tested to meet national or international standards and provide uniformity and predictability in their structural performance. Engineered wood products are used in a variety of applications, from home construction to commercial buildings to industrial products. The products can be used for joists and beams that replace steel in many building projects. The term mass timber describes a group of building materials that can replace concrete assemblies.

<span class="mw-page-title-main">Boat building</span> Design and construction of floating vessels

Boat building is the design and construction of boats and their systems. This includes at a minimum a hull, with propulsion, mechanical, navigation, safety and other systems as a craft requires.

<span class="mw-page-title-main">Modular building</span> Prefabricated building or house that consists of repeated sections

A modular building is a prefabricated building that consists of repeated sections called modules. Modularity involves constructing sections away from the building site, then delivering them to the intended site. Installation of the prefabricated sections is completed on site. Prefabricated sections are sometimes placed using a crane. The modules can be placed side-by-side, end-to-end, or stacked, allowing for a variety of configurations and styles. After placement, the modules are joined together using inter-module connections, also known as inter-connections. The inter-connections tie the individual modules together to form the overall building structure. Some popular modular companies include Clayton Homes, Champion Homes, and Boxabl.

<span class="mw-page-title-main">Timber framing</span> Traditional building technique

Timber framing and "post-and-beam" construction are traditional methods of building with heavy timbers, creating structures using squared-off and carefully fitted and joined timbers with joints secured by large wooden pegs. If the structural frame of load-bearing timber is left exposed on the exterior of the building it may be referred to as half-timbered, and in many cases the infill between timbers will be used for decorative effect. The country most known for this kind of architecture is Germany, where timber-framed houses are spread all over the country.

<span class="mw-page-title-main">Structural insulated panel</span>

A structural insulated panel, or structural insulating panel, (SIP), is a form of sandwich panel used in the construction industry.

Prefabrication is the practice of assembling components of a structure in a factory or other manufacturing site, and transporting complete assemblies or sub-assemblies to the construction site where the structure is to be located. Some researchers refer it to “various materials joined together to form a component of the final installation procedure“.

<span class="mw-page-title-main">Glued laminated timber</span> Building material

Glued laminated timber, commonly referred to as glulam, is a type of structural engineered wood product constituted by layers of dimensional lumber bonded together with durable, moisture-resistant structural adhesives so that all of the grain runs parallel to the longitudinal axis. In North America, the material providing the laminations is termed laminating stock or lamstock.

This page is a list of construction topics.

<span class="mw-page-title-main">Prefabricated home</span> Type of prefabricated building

Prefabricated homes, often referred to as prefab homes or simply prefabs, are specialist dwelling types of prefabricated building, which are manufactured off-site in advance, usually in standard sections that can be easily shipped and assembled. Some current prefab home designs include architectural details inspired by postmodernism or futurist architecture.

<span class="mw-page-title-main">Passive house</span> Type of house

Passive house is a voluntary standard for energy efficiency in a building, which reduces the building's ecological footprint. Conforming to these standards results in ultra-low energy buildings that require little energy for space heating or cooling. A similar standard, MINERGIE-P, is used in Switzerland. Standards are available for residential properties and several office buildings, schools, kindergartens and a supermarket have also been constructed to the standard. The design is not an attachment or supplement to architectural design, but a design process that integrates with architectural design. Although it is generally applied to new buildings, it has also been used for refurbishments.

<span class="mw-page-title-main">Frame and panel</span> Wood construction in which a panel is enclosed in a rigid frame

Frame and panel construction, also called rail and stile, is a woodworking technique often used in the making of doors, wainscoting, and other decorative features for cabinets, furniture, and homes. The basic idea is to capture a 'floating' panel within a sturdy frame, as opposed to techniques used in making a slab solid wood cabinet door or drawer front, the door is constructed of several solid wood pieces running in a vertical or horizontal direction with exposed endgrains. Usually, the panel is not glued to the frame but is left to 'float' within it so that seasonal movement of the wood comprising the panel does not distort the frame.

<span class="mw-page-title-main">Butt joint</span> Techniques to join two pieces of wood together

A butt joint is a wood joint in which the end of a piece of material is simply placed against another piece. The butt joint is the simplest joint. An unreinforced butt joint is also the weakest joint, as it provides a limited surface area for gluing and lacks any mechanical interlocking to resist external forces.

<span class="mw-page-title-main">Prefabricated building</span> Building constructed using prefabrication

A prefabricated building, informally a prefab, is a building that is manufactured and constructed using prefabrication. It consists of factory-made components or units that are transported and assembled on-site to form the complete building. Various materials were combined to create a part of the installation process.

<span class="mw-page-title-main">Cross-laminated timber</span> Wood panel product made from solid-sawn lumber

Cross-laminated timber (CLT) is a subcategory of engineered wood with panel product made from gluing together at least three layers of solid-sawn lumber. Each layer of boards is usually oriented perpendicular to adjacent layers and glued on the wide faces of each board, usually in a symmetric way so that the outer layers have the same orientation. An odd number of layers is most common, but there are configurations with even numbers as well. Regular timber is an anisotropic material, meaning that the physical properties change depending on the direction at which the force is applied. By gluing layers of wood at right angles, the panel is able to achieve better structural rigidity in both directions. It is similar to plywood but with distinctively thicker laminations.

<span class="mw-page-title-main">Stadthaus</span>

Stadthaus is a nine-storey residential building in Hackney, London. At nine stories, it is thought to be the second tallest timber residential structure in the world, after the Forte apartment complex in Melbourne, Australia. It was designed in collaboration between architects Waugh Thistleton, structural engineers Techniker, and timber panel manufacturer KLH.

<span class="mw-page-title-main">Carbon12</span> Mixed-use in Oregon, United States

Carbon12 is a wooden building in Portland, Oregon's Eliot neighborhood, in the United States. The eight-story structure built with Oregon-made cross-laminated timber (CLT) became the tallest wood building in the United States upon its completion.

References

  1. Ramage, Michael H.; Burridge, Henry; Busse-Wicher, Marta; Fereday, George; Reynolds, Thomas; Shah, Darshil U.; Wu, Guanglu; Yu, Li; Fleming, Patrick; Densley-Tingley, Danielle; Allwood, Julian; Dupree, Paul; Linden, P.F.; Scherman, Oren (February 2017). "The wood from the trees: The use of timber in construction". Renewable and Sustainable Energy Reviews. 68: 333–359. doi: 10.1016/j.rser.2016.09.107 . hdl: 10044/1/42921 .
  2. Haller, Peer (February 2008). "Eminent Structural Engineer: Julius Natterer" (PDF). elearning-iabse.org. Germany: Structural Engineering International. pp. 207–209. Archived from the original (PDF) on July 6, 2010.
  3. Henderson, James; Foster, Sam; Bridgestock, Matt (2012). "What is Brettstapel?". brettstapel.org.
  4. "Das System Weniger ist mehr!". brettstapel.at (in German). Archived from the original on 2019-01-27. Retrieved 2018-12-14.
  5. "E3 Building". e3berlin.de (in German). Archived from the original on October 17, 2007.
  6. Gerfen, Katie (August 11, 2014). "Soft House, designed by Kennedy & Violich Architecture". Architect Magazine. Retrieved April 29, 2016.
  7. "Passivhaus Construction". passivhaus.org.uk.
  8. "Forestry Statistics". forestry.gov.uk. 2009.
  9. "The Scottish Forestry Strategy". forestry.gov.uk. 2006. Archived from the original on 2009-06-26. Retrieved 2010-08-18.