Bunkbed conjecture

Last updated

The Bunkbed Conjecture (also spelled Bunk Bed Conjecture) is a statement in percolation theory, a branch of mathematics that studies the behavior of connected clusters in a random graph. The conjecture is named after its analogy to a bunk bed structure. It was first posited by Kasteleyn. [1]

Contents

Description

The conjecture has many equivalent formulations. [2] In the most general formulation it involves two identical graphs, referred to as the 'upper bunk' and the 'lower bunk'. These graphs are isomorphic, meaning they share the same structure. Additional edges, termed 'posts', are added to connect each vertex in the upper bunk with the corresponding vertex in the lower bunk.

Each edge in the graph is assigned a probability. The edges in the upper bunk and their corresponding edges in the lower bunk share the same probability. The probabilities assigned to the posts can be arbitrary.

A random subgraph of the bunkbed graph is then formed by independently deleting each edge based on the assigned probability.

Statement of the conjecture

The Bunkbed Conjecture states that in the resulting random subgraph, the probability that a vertex in the upper bunk is connected to some vertex in the upper bunk is greater than or equal to the probability that is connected to , the isomorphic copy of in the lower bunk.

Interpretation and significance

The conjecture suggests that two vertices of a graph are more likely to remain connected after randomly removing some edges if the graph distance between the vertices is smaller. This is intuitive, but proving this conjecture is not straightforward and is an active area of research in percolation theory. [3] Recently, it was resolved for particular types of graphs, such as wheels, [4] complete graphs, [5] complete bipartite graphs and graphs with a local symmetry. [6] It was also proven in the limit for any graph [7]

Related Research Articles

<span class="mw-page-title-main">Graph theory</span> Area of discrete mathematics

In mathematics, graph theory is the study of graphs, which are mathematical structures used to model pairwise relations between objects. A graph in this context is made up of vertices which are connected by edges. A distinction is made between undirected graphs, where edges link two vertices symmetrically, and directed graphs, where edges link two vertices asymmetrically. Graphs are one of the principal objects of study in discrete mathematics.

In combinatorics, Ramsey's theorem, in one of its graph-theoretic forms, states that one will find monochromatic cliques in any edge labelling (with colours) of a sufficiently large complete graph. To demonstrate the theorem for two colours (say, blue and red), let r and s be any two positive integers. Ramsey's theorem states that there exists a least positive integer R(r, s) for which every blue-red edge colouring of the complete graph on R(r, s) vertices contains a blue clique on r vertices or a red clique on s vertices. (Here R(r, s) signifies an integer that depends on both r and s.)

<span class="mw-page-title-main">Component (graph theory)</span> Maximal subgraph whose vertices can reach each other

In graph theory, a component of an undirected graph is a connected subgraph that is not part of any larger connected subgraph. The components of any graph partition its vertices into disjoint sets, and are the induced subgraphs of those sets. A graph that is itself connected has exactly one component, consisting of the whole graph. Components are sometimes called connected components.

This is a glossary of graph theory. Graph theory is the study of graphs, systems of nodes or vertices connected in pairs by lines or edges.

<span class="mw-page-title-main">Extremal graph theory</span>

Extremal graph theory is a branch of combinatorics, itself an area of mathematics, that lies at the intersection of extremal combinatorics and graph theory. In essence, extremal graph theory studies how global properties of a graph influence local substructure. Results in extremal graph theory deal with quantitative connections between various graph properties, both global and local, and problems in extremal graph theory can often be formulated as optimization problems: how big or small a parameter of a graph can be, given some constraints that the graph has to satisfy? A graph that is an optimal solution to such an optimization problem is called an extremal graph, and extremal graphs are important objects of study in extremal graph theory.

<span class="mw-page-title-main">Perfect graph</span> Graph with tight clique-coloring relation

In graph theory, a perfect graph is a graph in which the chromatic number equals the size of the maximum clique, both in the graph itself and in every induced subgraph. In all graphs, the chromatic number is greater than or equal to the size of the maximum clique, but they can be far apart. A graph is perfect when these numbers are equal, and remain equal after the deletion of arbitrary subsets of vertices.

<span class="mw-page-title-main">Hadwiger conjecture (graph theory)</span> Unproven generalization of the four-color theorem

In graph theory, the Hadwiger conjecture states that if is loopless and has no minor then its chromatic number satisfies . It is known to be true for . The conjecture is a generalization of the four-color theorem and is considered to be one of the most important and challenging open problems in the field.

The Zarankiewicz problem, an unsolved problem in mathematics, asks for the largest possible number of edges in a bipartite graph that has a given number of vertices and has no complete bipartite subgraphs of a given size. It belongs to the field of extremal graph theory, a branch of combinatorics, and is named after the Polish mathematician Kazimierz Zarankiewicz, who proposed several special cases of the problem in 1951.

<span class="mw-page-title-main">Grötzsch graph</span> Triangle-free graph requiring four colors

In the mathematical field of graph theory, the Grötzsch graph is a triangle-free graph with 11 vertices, 20 edges, chromatic number 4, and crossing number 5. It is named after German mathematician Herbert Grötzsch, who used it as an example in connection with his 1959 theorem that planar triangle-free graphs are 3-colorable.

<span class="mw-page-title-main">Rado graph</span> Infinite graph containing all countable graphs

In the mathematical field of graph theory, the Rado graph, Erdős–Rényi graph, or random graph is a countably infinite graph that can be constructed by choosing independently at random for each pair of its vertices whether to connect the vertices by an edge. The names of this graph honor Richard Rado, Paul Erdős, and Alfréd Rényi, mathematicians who studied it in the early 1960s; it appears even earlier in the work of Wilhelm Ackermann (1937). The Rado graph can also be constructed non-randomly, by symmetrizing the membership relation of the hereditarily finite sets, by applying the BIT predicate to the binary representations of the natural numbers, or as an infinite Paley graph that has edges connecting pairs of prime numbers congruent to 1 mod 4 that are quadratic residues modulo each other.

In theoretical computer science, the Aanderaa–Karp–Rosenberg conjecture is a group of related conjectures about the number of questions of the form "Is there an edge between vertex and vertex ?" that have to be answered to determine whether or not an undirected graph has a particular property such as planarity or bipartiteness. They are named after Stål Aanderaa, Richard M. Karp, and Arnold L. Rosenberg. According to the conjecture, for a wide class of properties, no algorithm can guarantee that it will be able to skip any questions: any algorithm for determining whether the graph has the property, no matter how clever, might need to examine every pair of vertices before it can give its answer. A property satisfying this conjecture is called evasive.

In extremal graph theory, the forbidden subgraph problem is the following problem: given a graph , find the maximal number of edges an -vertex graph can have such that it does not have a subgraph isomorphic to . In this context, is called a forbidden subgraph.

<span class="mw-page-title-main">Turán's brick factory problem</span> On minimizing crossings in bicliques

In the mathematics of graph drawing, Turán's brick factory problem asks for the minimum number of crossings in a drawing of a complete bipartite graph. The problem is named after Pál Turán, who formulated it while being forced to work in a brick factory during World War II.

<span class="mw-page-title-main">Graphon</span>

In graph theory and statistics, a graphon is a symmetric measurable function , that is important in the study of dense graphs. Graphons arise both as a natural notion for the limit of a sequence of dense graphs, and as the fundamental defining objects of exchangeable random graph models. Graphons are tied to dense graphs by the following pair of observations: the random graph models defined by graphons give rise to dense graphs almost surely, and, by the regularity lemma, graphons capture the structure of arbitrary large dense graphs.

<span class="mw-page-title-main">Degeneracy (graph theory)</span> Measurement of graph sparsity

In graph theory, a k-degenerate graph is an undirected graph in which every subgraph has a vertex of degree at most k: that is, some vertex in the subgraph touches k or fewer of the subgraph's edges. The degeneracy of a graph is the smallest value of k for which it is k-degenerate. The degeneracy of a graph is a measure of how sparse it is, and is within a constant factor of other sparsity measures such as the arboricity of a graph.

In the mathematical fields of graph theory and finite model theory, the logic of graphs deals with formal specifications of graph properties using sentences of mathematical logic. There are several variations in the types of logical operation that can be used in these sentences. The first-order logic of graphs concerns sentences in which the variables and predicates concern individual vertices and edges of a graph, while monadic second-order graph logic allows quantification over sets of vertices or edges. Logics based on least fixed point operators allow more general predicates over tuples of vertices, but these predicates can only be constructed through fixed-point operators, restricting their power.

<span class="mw-page-title-main">Half graph</span> Type of graph in mathematics

In graph theory, a branch of mathematics, a half graph is a special type of bipartite graph. These graphs are called the half graphs because they have approximately half of the edges of a complete bipartite graph on the same vertices. The name was given to these graphs by Paul Erdős and András Hajnal.

In graph theory, the graph removal lemma states that when a graph contains few copies of a given subgraph, then all of the copies can be eliminated by removing a small number of edges. The special case in which the subgraph is a triangle is known as the triangle removal lemma.

<span class="mw-page-title-main">Ruzsa–Szemerédi problem</span>

In combinatorial mathematics and extremal graph theory, the Ruzsa–Szemerédi problem or (6,3)-problem asks for the maximum number of edges in a graph in which every edge belongs to a unique triangle. Equivalently it asks for the maximum number of edges in a balanced bipartite graph whose edges can be partitioned into a linear number of induced matchings, or the maximum number of triples one can choose from points so that every six points contain at most two triples. The problem is named after Imre Z. Ruzsa and Endre Szemerédi, who first proved that its answer is smaller than by a slowly-growing factor.

Sidorenko's conjecture is a conjecture in the field of graph theory, posed by Alexander Sidorenko in 1986. Roughly speaking, the conjecture states that for any bipartite graph and graph on vertices with average degree , there are at least labeled copies of in , up to a small error term. Formally, it provides an intuitive inequality about graph homomorphism densities in graphons. The conjectured inequality can be interpreted as a statement that the density of copies of in a graph is asymptotically minimized by a random graph, as one would expect a fraction of possible subgraphs to be a copy of if each edge exists with probability .

References

  1. van den Berg, Jacob; Kahn, Jeff (2001). "A correlation inequality for connection events in percolation". Annals of Probability. 29 (1): 123–126. doi:10.1214/aop/1008956324. JSTOR   2652916 . Retrieved December 17, 2023.
  2. Rudzinski, James; Smyth, Clifford (2016). "Equivalent Formulations of the Bunk Bed Conjecture". North Carolina Journal of Mathematics and Statistics. 2: 23–28. Retrieved December 17, 2023.
  3. Grimmett, Geoffrey R. (2022). "Selected problems in probability theory". European Journal of Combinatorics. arXiv: 2205.07318 .
  4. Leander, Madeleine (2009). "On the bunkbed conjecture" (PDF). Självständiga arbeten i matematik. Retrieved December 17, 2023.
  5. van Hintum, Peter; Lammers, Piet (2018). "The bunkbed conjecture on the complete graph". European Journal of Combinatorics. 76: 175–177. arXiv: 1803.07647 . doi:10.1016/j.ejc.2018.10.002.
  6. Richthammer, Thomas (2022). "Bunkbed conjecture for complete bipartite graphs and related classes of graphs". arXiv: 2204.12931 [math.PR].
  7. Hutchcroft, Tom; Kent, Alexander; Nizić-Nikolac, Petar (2023). "The bunkbed conjecture holds in the limit". Combinatorics, Probability and Computing. Cambridge University Press. 32 (3): 363–369. doi:10.1017/S096354832200027X. S2CID   263889353.