Buried valley

Last updated

A buried valley is an ancient river or stream valley that has been filled with glacial or unconsolidated sediment. [1] This sediment is made up of predominantly gravel and sand, with some silt and clay. These types of sediments can often store and transmit large amounts of groundwater and act as a local aquifer.

Contents

Buried valleys may have been created by glacial lake runoff prior to the last major advance and retreat of continental glaciation. These valleys often have no surface expression, but constitute a major source of groundwater in the glaciated mid-continent region of North America [2] and Northern Europe. [3] Recently, research has been focused on understanding the sedimentology of these formations in an effort to determine the safety of continued use of the aquifers which are often found in them. [4]

Overview

Buried valleys are created when ancient river or stream valleys are present that predate the most recent glaciation, and since have been filled with glacial till and/or outwash. [5] In the Pleistocene, advancement and retreat of glaciers carved out the preexisting valleys, and deposited the material that had accumulated in the glacier by the melting of either the glacial outwash or the melting of the ice that composed the glacier itself. Buried valleys are traditionally V- or U-shaped due to the natural shape of valleys, but buried valleys can exhibit different shapes if there were any sort of erosional events after the glacier had finished retreating. [6] The ability to hold groundwater comes from the makeup of the glacial outwash deposits. The glacial outwash deposits of these preexisting valleys mainly consist of coarser materials, such as sand and gravel. Since these materials are coarser, when there is a soil that is almost purely made of these materials, the pore space of the soil increases. This increased pore space creates more voids for water, especially when compared to silt or clay rich soil. After these valleys are formed and filled in, a layer of finer sediment such as silts and clays covers the top of the valley, burying the valley. Buried valleys are best known as being aquifers, and are often used to supply humans with potable water, as well as supply the agriculture and industrial fields with water.

Mapping buried valleys

Buried valleys are difficult to measure and create models for, as they are normally buried deeply beneath the earth's surface in geologically complex areas. There are several different methods that are used to identify buried valleys, including determining depth to bedrock, the drilling/boring in to the earth's crust to analyze soil makeup, and utilizing existing water wells, although it is said that these methods alone are barely adequate. [7] In order to map the buried valleys, dense data coverage is essential. Typically, the borehole density is relatively small and especially deep boreholes are sparse. [8] It is important that the borehole density is large throughout the area being mapped so that a higher level of accuracy can be attained. Since the buried valleys are carved out by glaciers, topography can be highly variable. The more borings/ cores that are taken, the more accurate the map will be. Based on depth to bedrock reported in water well observations, the electrical conductivity of bedrock appears largely separable from that of the overlying glacial sediments due to the higher conductivity of the shale present in some soils. In one study done in Denmark, a series of braided buried valleys were found anywhere from 10 m to 300 m below the surface using drilling/boring. [9] In order to map the buried valleys, dense data coverage is essential. Although there are no published 3D models of buried models, 2D models have been published many times.

Buried valleys as aquifers

Perhaps what buried valleys are most known for is their ability to become aquifers that store groundwater. The main form of recharge found in buried valley aquifers occurs is the percolation of groundwater through glacial tills and upper intertill aquifers. [10] In fact, many communities in the Midwest get their water from aquifers that were created from these buried valleys, such as Miami, Ohio. [11] In some prairie buried valleys in Canada, the underlying material is made of dense shale, while the covering over the buried valley is made up of such a dense composition Quaternary fill that it vastly limits recharge of the buried valley aquifer, almost to the point of restricting it completely. [12] Recharge is very important, as many different cities all over the world use buried valleys as their main water source. Often, the reason buried valleys are mapped is due to the ability to utilize previously deeply drilled wells that have been supplying water to communities. [13] Since buried valleys were once valleys on the earth surface, they have a slope or gradient to them. Due to this slope within the valleys, the water will move according to gravity, and produce a flow of water from the higher elevation areas to the lower elevation areas.

See also

Related Research Articles

Drumlin Elongated hill formed by the action of glacial ice on the substrate

A drumlin, from the Irish word droimnín, first recorded in 1833, in the classical sense is an elongated hill in the shape of an inverted spoon or half-buried egg formed by glacial ice acting on underlying unconsolidated till or ground moraine. Clusters of drumlins create a landscape which is often described as having a 'basket of eggs topography'.

Aquifer Underground layer of water-bearing permeable rock

An aquifer is an underground layer of water-bearing permeable rock, rock fractures or unconsolidated materials. Groundwater can be extracted using a water well. The study of water flow in aquifers and the characterization of aquifers is called hydrogeology. Related terms include aquitard, which is a bed of low permeability along an aquifer, and aquiclude, which is a solid, impermeable area underlying or overlying an aquifer, the pressure of which could create a confined aquifer.

Water table Top of a saturated aquifer, or where the water pressure head is equal to the atmospheric pressure

The water table is the upper surface of the zone of saturation. The zone of saturation is where the pores and fractures of the ground are saturated with water.

Groundwater Water located beneath the ground surface

Groundwater is the water present beneath Earth's surface in soil pore spaces and in the fractures of rock formations. A unit of rock or an unconsolidated deposit is called an aquifer when it can yield a usable quantity of water. The depth at which soil pore spaces or fractures and voids in rock become completely saturated with water is called the water table. Groundwater is recharged from the surface; it may discharge from the surface naturally at springs and seeps, and can form oases or wetlands. Groundwater is also often withdrawn for agricultural, municipal, and industrial use by constructing and operating extraction wells. The study of the distribution and movement of groundwater is hydrogeology, also called groundwater hydrology.

Hydrogeology The study of the distribution and movement of groundwater

Hydrogeology is the area of geology that deals with the distribution and movement of groundwater in the soil and rocks of the Earth's crust. The terms groundwater hydrology, geohydrology, and hydrogeology are often used interchangeably.

Kettle (landform) A depression/hole in an outwash plain formed by retreating glaciers or draining floodwaters

A kettle is a depression/hole in an outwash plain formed by retreating glaciers or draining floodwaters. The kettles are formed as a result of blocks of dead ice left behind by retreating glaciers, which become surrounded by sediment deposited by meltwater streams as there is increased friction. The ice becomes buried in the sediment and when the ice melts, a depression is left called a kettle hole, creating a dimpled appearance on the outwash plain. Lakes often fill these kettles; these are called kettle hole lakes. Another source is the sudden drainage of an ice-dammed lake. When the block melts, the hole it leaves behind is a kettle. As the ice melts, ramparts can form around the edge of the kettle hole. The lakes that fill these holes are seldom more than 10 m (33 ft) deep and eventually become filled with sediment. In acid conditions, a kettle bog may form but in alkaline conditions, it will be kettle peatland.

Outwash plain Plain formed from glacier sediment that was transported by meltwater.

An outwash plain, also called a sandur, sandr or sandar, is a plain formed of glacial sediments deposited by meltwater outwash at the terminus of a glacier. As it flows, the glacier grinds the underlying rock surface and carries the debris along. The meltwater at the snout of the glacier deposits its load of sediment over the outwash plain, with larger boulders being deposited near the terminal moraine, and smaller particles travelling further before being deposited. Sandurs are common in Iceland where geothermal activity accelerates the melting of ice flows and the deposition of sediment by meltwater.

The Illinoian Stage is the name used by Quaternary geologists in North America to designate the period c.191,000 to c.130,000 years ago, during the middle Pleistocene, when sediments comprising the Illinoian Glacial Lobe were deposited. It precedes the Sangamonian Stage and follows the Pre-Illinoian Stage in North America. The Illinoian Stage is defined as the period of geologic time during which the glacial tills and outwash, which comprise the bulk of the Glasford Formation, accumulated to create the Illinoian Glacial Lobe. It occurs at about the same time as the penultimate glacial period.

The Waterloo Moraine is a landform and sediment body that was created as a moraine in the Regional Municipality of Waterloo, in Ontario, Canada. It covers a large portion of the cities of Waterloo and Kitchener and the township of Wilmot, and some parts of the townships of Wellesley and North Dumfries. About 90% of the water supply of the Regional Municipality of Waterloo is derived from groundwater of the Waterloo Moraine aquifer system.

Outwash fan A fan-shaped body of sediments deposited by braided streams from a melting glacier

An outwash fan is a fan-shaped body of sediments deposited by braided streams from a melting glacier. Sediment locked within the ice of the glacier, gets transported by the streams of meltwater, and deposits on the outwash plain, at the terminus of the glacier. The outwash, the sediment transported and deposited by the meltwater and that makes up the fan, is usually poorly sorted due to the short distance traveled before being deposited.

Tunnel valley A U-shaped valley originally cut by water under the glacial ice near the margin of continental ice sheets

A tunnel valley is a U-shaped valley originally cut under the glacial ice near the margin of continental ice sheets such as that now covering Antarctica and formerly covering portions of all continents during past glacial ages. They can be as long as 100 km (62 mi), 4 km (2.5 mi) wide, and 400 m (1,300 ft) deep.

Glacial history of Minnesota

The glacial history of Minnesota is most defined since the onset of the last glacial period, which ended some 10,000 years ago. Within the last million years, most of the Midwestern United States and much of Canada were covered at one time or another with an ice sheet. This continental glacier had a profound effect on the surface features of the area over which it moved. Vast quantities of rock and soil were scraped from the glacial centers to its margins by slowly moving ice and redeposited as drift or till. Much of this drift was dumped into old preglacial river valleys, while some of it was heaped into belts of hills at the margin of the glacier. The chief result of glaciation has been the modification of the preglacial topography by the deposition of drift over the countryside. However, continental glaciers possess great power of erosion and may actually modify the preglacial land surface by scouring and abrading rather than by the deposition of the drift.

Geology of Kansas

The Geology of Kansas encompasses the geologic history of the US state of Kansas and the present-day rock and soil that is exposed there. Rock that crops out in Kansas was formed during the Phanerozoic eon, which consists of three geologic eras: the Paleozoic, Mesozoic and Cenozoic. Paleozoic rocks at the surface in Kansas are primarily from the Mississippian, Pennsylvanian and Permian periods.

Lake Albany

Glacial Lake Albany was a prehistoric North American proglacial lake that formed during the end of the Wisconsinan glaciation. It existed between 15,000 and 12,600 years ago and was created when meltwater from a retreating glacier, along with water from rivers such as the Iromohawk, became ice dammed in the Hudson Valley. Organic materials in Lake Albany deposits have been carbon dated to approximately 11,700 years ago. The lake spanned approximately 160 miles (260 km) from present-day Newburgh to Glens Falls.

Overdeepening Characteristic of basins and valleys eroded by glaciers

Overdeepening is a characteristic of basins and valleys eroded by glaciers. An overdeepened valley profile is often eroded to depths which are hundreds of metres below the deepest continuous line along a valley or watercourse. This phenomenon is observed under modern day glaciers, in salt-water fjords and fresh-water lakes remaining after glaciers melt, as well as in tunnel valleys which are partially or totally filled with sediment. When the channel produced by a glacier is filled with debris, the subsurface geomorphic structure is found to be erosionally cut into bedrock and subsequently filled by sediments. These overdeepened cuts into bedrock structures can reach a depth of several hundred metres below the valley floor.

The geology of Maine is part of the broader geology of New England and eastern North America.

Geology of Rhode Island

The geology of Rhode Island is based on nearly one billion year old igneous crystalline basement rocks formed as part of the microcontinent Avalonia that collided with the supercontinent Gondwana. The region experienced substantial folding associated with its landlocked position during the Alleghanian orogeny mountain building event. The region accumulated sedimentary rocks, including small deposits of coal. The region was covered with thick Atlantic Coastal Plain sediments, with the erosion of the Appalachians and the creation of the Atlantic Ocean throughout the past 200 million years. These surficial sediments and soils were substantially reworked by the Pleistocene glaciations. The state's geology is part of the broader geology of New England.

Geology of Sudan

The geology of Sudan formed primarily in the Precambrian, as igneous and metamorphic crystalline basement rock. Ancient terranes and inliers were intruded with granites, granitoids as well as volcanic rocks. Units of all types were deformed, reactivated, intruded and metamorphosed during the Proterozoic Pan-African orogeny. Dramatic sheet flow erosion prevented almost any sedimentary rocks from forming during the Paleozoic and Mesozoic. From the Mesozoic into the Cenozoic the formation of the Red Sea depression and complex faulting led to massive sediment deposition in some locations and regional volcanism. Sudan has petroleum, chromite, salt, gold, limestone and other natural resources.

The geology of Estonia is the study of rocks, minerals, water, landforms and geologic history in Estonia. The crust is part of the East European Craton and formed beginning in the Paleoproterozoic nearly two billion years ago. Shallow marine environments predominated in Estonia, producing extensive natural resources from organic matter such as oil shale and phosphorite. The Mesozoic and much of the Cenozoic are not well-preserved in the rock record, although the glaciations during the Pleistocene buried deep valleys in sediment, rechanneled streams and left a landscape of extensive lakes and peat bogs.

Groundwater in Nigeria is widely used for domestic, agricultural, and industrial supplies. The Joint Monitoring Programme for Water Supply and Sanitation estimate that in 2018 60% of the total population were dependent on groundwater point sources for their main drinking water source: 73% in rural areas and 45% in urban areas. The cities of Calabar and Port Harcourt are totally dependent on groundwater for their water supply.

References

  1. Ohio DNR, Well Construction in a Buried Valley
  2. Kehew, Alan E.; Boettger, William M. (Nov–Dec 1986). "Depositional Environments of Buried-Valley Aquifers in North Dakota". Groundwater. 24 (6): 728–734. doi:10.1111/j.1745-6584.1986.tb01688.x.
  3. Jorgensen, F; Sandersen, P (2006). "Buried and open tunnel valleys in Denmark - erosion beneath multiple ice sheets". Quaternary Science Reviews . 25 (11–12): 1339–1363. Bibcode:2006QSRv...25.1339J. doi:10.1016/j.quascirev.2005.11.006.
  4. Smith, LN (2004). "Late Pleistocene stratigraphy and implications for deglaciation and subglacial processes of the Flathead Lobe of the Cordilleran Ice Sheet, Flathead Valley, Montana, USA". Sedimentary Geology . 165 (3–4): 295–332. Bibcode:2004SedG..165..295S. doi:10.1016/j.sedgeo.2003.11.013.
  5. Seyoum, W. , & Eckstein, Y. (2014). Hydraulic relationships between buried valley sediments of the glacial drift and adjacent bedrock formations in northeastern Ohio, USA. Hydrogeology Journal, 22(5), 1193–1206.
  6. Metzen, J. (2012). Discovery of an e-w trending Pleistocene buried valley in the German bight, southern North Sea. Quaternary International, 279–280, 325.
  7. Oldenborger, G. , Logan, C. , Hinton, M. , Pugin, A. , Sapia, V. , et al. (2016). Bedrock mapping of buried valley networks using seismic reflection and airborne electromagnetic data. Journal of Applied Geophysics, 128, 191–201.
  8. Høyer, A. , Jørgensen, F. , Sandersen, P. , Viezzoli, A. , & Møller, I. (2015). 3d geological modelling of a complex buried-valley network delineated from borehole and aem data. Journal of Applied Geophysics, 122, 94–102.
  9. He, X. , Sonnenborg, T. , Jørgensen, F. , & Jensen, K. (2017). Modelling a real-world buried valley system with vertical non-stationarity using multiple-point statistics. Hydrogeology Journal, 25(2), 359–370.
  10. Dragon, K. (2008). The influence of anthropogenic contamination on the groundwater chemistry of a semi-confined aquifer (the wielkopolska buried valley aquifer, Poland). Water Resources Management, 22(3), 343–355.
  11. "Miami Conservation District. (2009). Water in the Great Miami River Watershed". Archived from the original on 2016-11-11. Retrieved 2017-05-08.
  12. Buried-valley aquifers in the Canadian prairies: Geology, hydrogeology, and origin 1 1 earth science sector (ess) contribution 20120131. (2012). Canadian Journal of Earth Sciences, 49(9), 987–1004.
  13. Kluiving, S. , Aleid Bosch, J. , Ebbing, J. , Mesdag, C. , & Westerhoff, R. (2003). Onshore and offshore seismic and lithostratigraphic analysis of a deeply incised Quaternary buried valley system in the northern Netherlands. Journal of Applied Geophysics, 53(4), 249–271.

Further reading