Butyraldehyde

Last updated
Butyraldehyde [1]
Butanal-skeletal.png
Butyraldehyde flat structure.png
Butyraldehyde-3D-balls.png
Names
Preferred IUPAC name
Butanal
Other names
Butyraldehyde
Identifiers
3D model (JSmol)
3DMet
ChEBI
ChEMBL
ChemSpider
ECHA InfoCard 100.004.225 OOjs UI icon edit-ltr-progressive.svg
EC Number
  • 204-646-6
KEGG
PubChem CID
RTECS number
  • ES2275000
UNII
UN number 1129
  • InChI=1S/C4H8O/c1-2-3-4-5/h4H,2-3H2,1H3 Yes check.svgY
    Key: ZTQSAGDEMFDKMZ-UHFFFAOYSA-N Yes check.svgY
  • InChI=1/C4H8O/c1-2-3-4-5/h4H,2-3H2,1H3
    Key: ZTQSAGDEMFDKMZ-UHFFFAOYAZ
  • O=CCCC
Properties
C4H8O
Molar mass 72.107 g·mol−1
AppearanceColorless liquid
Odor Pungent, aldehyde odor
Density 0.8016 g/mL
Melting point −96.86 °C (−142.35 °F; 176.29 K)
Boiling point 74.8 °C (166.6 °F; 347.9 K)
Critical point (T, P)537 K (264 °C),
4.32 MPa (42.6 atm)
7.6 g/100 mL (20 °C)
Solubility Miscible with organic solvents
log P 0.88
−46.08·10−6 cm3/mol
1.3766
Viscosity 0.45  cP (20 °C)
2.72 D
Thermochemistry [2]
163.7 J·mol−1·K−1 (liquid)
103.4 J·mol−1·K−1 (gas)
Std molar
entropy
(S298)
246.6 J·mol−1·K−1 (liquid)
343.7 J·mol−1·K−1 (gas)
−239.2 kJ·mol−1 (liquid)
−204.8 kJ·mol−1 (gas)
2470.34 kJ·mol−1
Hazards
GHS labelling:
GHS-pictogram-flamme.svg GHS-pictogram-exclam.svg [3]
Danger
H225, H319 [3]
P210, P280, P302+P352, P304+P340, P305+P351+P338 [3]
NFPA 704 (fire diamond)
NFPA 704.svgHealth 3: Short exposure could cause serious temporary or residual injury. E.g. chlorine gasFlammability 3: Liquids and solids that can be ignited under almost all ambient temperature conditions. Flash point between 23 and 38 °C (73 and 100 °F). E.g. gasolineInstability 0: Normally stable, even under fire exposure conditions, and is not reactive with water. E.g. liquid nitrogenSpecial hazards (white): no code
3
3
0
Flash point −7 °C (19 °F; 266 K)
230 °C (446 °F; 503 K)
Explosive limits 1.912.5%
Lethal dose or concentration (LD, LC):
2490 mg/kg (rat, oral)
Safety data sheet (SDS) Sigma-Aldrich
Related compounds
Related aldehyde
Propionaldehyde
Pentanal
Related compounds
Butan-1-ol
Butyric acid, isobutyraldehyde
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
Yes check.svgY  verify  (what is  Yes check.svgYX mark.svgN ?)

Butyraldehyde, also known as butanal, is an organic compound with the formula CH3(CH2)2CHO. This compound is the aldehyde derivative of butane. It is a colorless flammable liquid with an unpleasant smell. It is miscible with most organic solvents.

Contents

Production

Butyraldehyde is produced almost exclusively by the hydroformylation of propylene:

CH3CH=CH2 + H2 + CO → CH3CH2CH2CHO

Traditionally, hydroformylation was catalyzed by cobalt carbonyl and later rhodium complexes of triphenylphosphine. The dominant technology involves the use of rhodium catalysts derived from the water-soluble ligand tppts. An aqueous solution of the rhodium catalyst converts the propylene to the aldehyde, which forms a lighter immiscible phase. About 6 billion kilograms are produced annually by hydroformylation. Butyraldehyde can be produced by the catalytic dehydrogenation of n-butanol. At one time, it was produced industrially by the catalytic hydrogenation of crotonaldehyde, which is derived from acetaldehyde. [4]

Reactions

Butyraldehyde undergoes reactions typical of alkyl aldehydes, and these define many of the uses of this compound. Important reactions include hydrogenation to the alcohol, oxidation to the acid, and base-catalyzed condensation.

Uses

Aldol condensation in the presence of a base forms 2-ethyl-2-hexenal, which is then hydrogenated to form 2-ethylhexanol, a precursor to the plasticizer bis(2-ethylhexyl) phthalate. [4]

Butyraldehyde is a precursor in the two-step synthesis of trimethylolpropane, which is used for the production of alkyd resins. [5]

A major use of butyraldehyde is in the production of bis(2-ethylhexyl) phthalate, a major plasticizer. Bis(2-ethylhexyl) phthalate.svg
A major use of butyraldehyde is in the production of bis(2-ethylhexyl) phthalate, a major plasticizer.

Related Research Articles

<span class="mw-page-title-main">Aldehyde</span> Organic compound containing the functional group R−CH=O

In organic chemistry, an aldehyde is an organic compound containing a functional group with the structure R−CH=O. The functional group itself can be referred to as an aldehyde but can also be classified as a formyl group. Aldehydes are a common motif in many chemicals important in technology and biology.

<span class="mw-page-title-main">Hydrogenation</span> Chemical reaction between molecular hydrogen and another compound or element

Hydrogenation is a chemical reaction between molecular hydrogen (H2) and another compound or element, usually in the presence of a catalyst such as nickel, palladium or platinum. The process is commonly employed to reduce or saturate organic compounds. Hydrogenation typically constitutes the addition of pairs of hydrogen atoms to a molecule, often an alkene. Catalysts are required for the reaction to be usable; non-catalytic hydrogenation takes place only at very high temperatures. Hydrogenation reduces double and triple bonds in hydrocarbons.

<span class="mw-page-title-main">Tetrahydrofuran</span> Cyclic chemical compound, (CH₂)₄O

Tetrahydrofuran (THF), or oxolane, is an organic compound with the formula (CH2)4O. The compound is classified as heterocyclic compound, specifically a cyclic ether. It is a colorless, water-miscible organic liquid with low viscosity. It is mainly used as a precursor to polymers. Being polar and having a wide liquid range, THF is a versatile solvent.

<span class="mw-page-title-main">Cumene process</span> Industrial process

The cumene process is an industrial process for synthesizing phenol and acetone from benzene and propylene. The term stems from cumene, the intermediate material during the process. It was invented by R. Ūdris and P. Sergeyev in 1942 (USSR), and independently by Heinrich Hock in 1944.

<span class="mw-page-title-main">Epoxide</span> Organic compounds with a carbon-carbon-oxygen ring

In organic chemistry, an epoxide is a cyclic ether, where the ether forms a three-atom ring: two atoms of carbon and one atom of oxygen. This triangular structure has substantial ring strain, making epoxides highly reactive, more so than other ethers. They are produced on a large scale for many applications. In general, low molecular weight epoxides are colourless and nonpolar, and often volatile.

A diol is a chemical compound containing two hydroxyl groups. An aliphatic diol is also called a glycol. This pairing of functional groups is pervasive, and many subcategories have been identified.

In organic chemistry, hydroformylation, also known as oxo synthesis or oxo process, is an industrial process for the production of aldehydes from alkenes. This chemical reaction entails the net addition of a formyl group and a hydrogen atom to a carbon-carbon double bond. This process has undergone continuous growth since its invention: production capacity reached 6.6×106 tons in 1995. It is important because aldehydes are easily converted into many secondary products. For example, the resultant aldehydes are hydrogenated to alcohols that are converted to detergents. Hydroformylation is also used in speciality chemicals, relevant to the organic synthesis of fragrances and pharmaceuticals. The development of hydroformylation is one of the premier achievements of 20th-century industrial chemistry.

In chemistry, homogeneous catalysis is catalysis where the catalyst is in same phase as reactants, principally by a soluble catalyst a in solution. In contrast, heterogeneous catalysis describes processes where the catalysts and substrate are in distinct phases, typically solid-gas, respectively. The term is used almost exclusively to describe solutions and implies catalysis by organometallic compounds. Homogeneous catalysis is an established technology that continues to evolve. An illustrative major application is the production of acetic acid. Enzymes are examples of homogeneous catalysts.

<span class="mw-page-title-main">Isobutanol</span> Chemical compound

Isobutanol (IUPAC nomenclature: 2-methylpropan-1-ol) is an organic compound with the formula (CH3)2CHCH2OH (sometimes represented as i-BuOH). This colorless, flammable liquid with a characteristic smell is mainly used as a solvent either directly or as its esters. Its isomers are 1-butanol, 2-butanol, and tert-butanol, all of which are important industrially.

The Guerbet reaction, named after Marcel Guerbet (1861–1938), is an organic reaction that converts a primary alcohol into its β-alkylated dimer alcohol with loss of one equivalent of water. The process is of interest because it converts simple inexpensive feedstocks into more valuable products. Its main disadvantage is that the reaction produces mixtures.

Hydrosilylation, also called catalytic hydrosilation, describes the addition of Si-H bonds across unsaturated bonds. Ordinarily the reaction is conducted catalytically and usually the substrates are unsaturated organic compounds. Alkenes and alkynes give alkyl and vinyl silanes; aldehydes and ketones give silyl ethers. Hydrosilylation has been called the "most important application of platinum in homogeneous catalysis."

<span class="mw-page-title-main">Isobutyraldehyde</span> Chemical compound

Isobutyraldehyde is the chemical compound with the formula (CH3)2CHCHO. It is an aldehyde, isomeric with n-butyraldehyde (butanal). Isobutyraldehyde is made, often as a side-product, by the hydroformylation of propene. Its odour is described as that of wet cereal or straw. It undergoes the Cannizaro reaction even though it has alpha hydrogen atom. It is a colorless volatile liquid.

<span class="mw-page-title-main">Pentanal</span> Chemical compound

Pentanal is the organic compound with molecular formula C4H9CHO. Classified as an alkyl aldehyde, it is a colorless volatile liquid. Its odor is described as fermented, bready, fruity, nutty, berry.

<span class="mw-page-title-main">2-Ethylhexanoic acid</span> Chemical compound

2-Ethylhexanoic acid is the organic compound with the formula CH3(CH2)3CH(C2H5)CO2H. It is a carboxylic acid that is widely used to prepare lipophilic metal derivatives that are soluble in nonpolar organic solvents. 2-Ethylhexanoic acid is a colorless viscous oil. It is supplied as a racemic mixture.

In chemistry, carbonylation refers to reactions that introduce carbon monoxide (CO) into organic and inorganic substrates. Carbon monoxide is abundantly available and conveniently reactive, so it is widely used as a reactant in industrial chemistry. The term carbonylation also refers to oxidation of protein side chains.

Octanal is the organic compound, an aldehyde, with the chemical formula CH3(CH2)6CHO. A colorless fragrant liquid with a fruit-like odor, it occurs naturally in citrus oils. It is used commercially as a component in perfumes and in flavor production for the food industry. It is usually produced by hydroformylation of heptene and the dehydrogenation of 1-octanol.

Heptanal or heptanaldehyde is an alkyl aldehyde. It is a colourless liquid with a strong fruity odor, which is used as precursor to components in perfumes and lubricants.

<span class="mw-page-title-main">TPPTS</span> Chemical compound

3,3′,3′′-Phosphanetriyltris(benzenesulfonic acid) trisodium salt (abbreviated TPPTS), is an organic compound that is also known as sodium triphenylphosphine trisulfonate. The compound has the formula P(C6H4SO3Na)3. This white solid is an unusual example of a water-soluble phosphine. Its complexes are also water-soluble. Its complex with rhodium is used in the industrial production of butyraldehyde.

<span class="mw-page-title-main">Organorhodium chemistry</span> Field of study

Organorhodium chemistry is the chemistry of organometallic compounds containing a rhodium-carbon chemical bond, and the study of rhodium and rhodium compounds as catalysts in organic reactions.

<span class="mw-page-title-main">Allyl acetate</span> Chemical compound

Allyl acetate is an organic compound with formula C3H5OC(O)CH3. This colourless liquid is a precursor to especially allyl alcohol, which is a useful industrial intermediate. It is the acetate ester of allyl alcohol.

References

  1. Merck Index, 11th Edition, 1591.
  2. CRC handbook of chemistry and physics : a ready-reference book of chemical and physical data. William M. Haynes, David R. Lide, Thomas J. Bruno (2016-2017, 97th ed.). Boca Raton, Florida. 2016. ISBN   978-1-4987-5428-6. OCLC   930681942.{{cite book}}: CS1 maint: location missing publisher (link) CS1 maint: others (link)
  3. 1 2 3 Record of Butyraldehyde in the GESTIS Substance Database of the Institute for Occupational Safety and Health, accessed on 13 March 2020.
  4. 1 2 Raff, Donald K. (2013). "Butanals". Ullmann's Encyclopedia of Industrial Chemistry . Weinheim: Wiley-VCH. doi:10.1002/14356007.a04_447.pub2.
  5. Werle, Peter; Morawietz, Marcus; Lundmark, Stefan; Sörensen, Kent; Karvinen, Esko; Lehtonen, Juha. "Alcohols, Polyhydric". Ullmann's Encyclopedia of Industrial Chemistry . Weinheim: Wiley-VCH. doi:10.1002/14356007.a01_305.pub2.