CACNA2D3

Last updated
CACNA2D3
Identifiers
Aliases CACNA2D3 , HSA272268, calcium voltage-gated channel auxiliary subunit alpha2delta 3
External IDs OMIM: 606399 MGI: 1338890 HomoloGene: 74929 GeneCards: CACNA2D3
Orthologs
SpeciesHumanMouse
Entrez
Ensembl
UniProt
RefSeq (mRNA)

NM_018398

NM_009785

RefSeq (protein)

NP_060868

NP_033915

Location (UCSC) Chr 3: 54.12 – 55.07 Mb Chr 14: 28.63 – 29.44 Mb
PubMed search [3] [4]
Wikidata
View/Edit Human View/Edit Mouse

Calcium channel, voltage-dependent, alpha 2/delta subunit 3 is a protein that in humans is encoded by the CACNA2D3 gene on chromosome 3 (locus 3p21.1). [5]

Contents

Function

This gene encodes a member of the alpha-2/delta subunit family, a protein in the voltage-dependent calcium channel complex. Calcium channels mediate the influx of calcium ions into the cell upon membrane polarization and consist of a complex of alpha-1, alpha-2/delta, beta, and gamma subunits in a 1:1:1:1 ratio. Various versions of each of these subunits exist, either expressed from similar genes or the result of alternative splicing. Research on a highly similar protein in rabbit suggests the protein described in this record is cleaved into alpha-2 and delta subunits. Alternate transcriptional splice variants of this gene have been observed but have not been thoroughly characterized.

Clinical significance

Number of studies reported an association between methylation of the CACNA2D3 gene and cancer.

Breast cancer

Methylation-dependent transcriptional silencing of CACNA2D3 gene may contribute to the metastatic phenotype of breast cancer. Analysis of methylation in the CACNA2D3 CpG island may have potential as a biomarker for risk of development of metastatic disease. [6]

Gastric cancer

The loss of CACNA2D3 gene expression through aberrant promoter hypermethylation may contribute to gastric carcinogenesis, and CACNA2D3 gene methylation is a useful prognostic marker for patients with advanced gastric cancer. [7] Physical exercise was correlated with a lower methylation frequency of CACNA2D3. [8]

Related Research Articles

Voltage-gated calcium channels (VGCCs), also known as voltage-dependent calcium channels (VDCCs), are a group of voltage-gated ion channels found in the membrane of excitable cells (e.g., muscle, glial cells, neurons, etc.) with a permeability to the calcium ion Ca2+. These channels are slightly permeable to sodium ions, so they are also called Ca2+-Na+ channels, but their permeability to calcium is about 1000-fold greater than to sodium under normal physiological conditions.

Ca<sub>v</sub>1.2 Protein-coding gene in the species Homo sapiens

Calcium channel, voltage-dependent, L type, alpha 1C subunit is a protein that in humans is encoded by the CACNA1C gene. Cav1.2 is a subunit of L-type voltage-dependent calcium channel.

The R-type calcium channel is a type of voltage-dependent calcium channel. Like the others of this class, the α1 subunit forms the pore through which calcium enters the cell and determines most of the channel's properties. This α1 subunit is also known as the calcium channel, voltage-dependent, R type, alpha 1E subunit (CACNA1E) or Cav2.3 which in humans is encoded by the CACNA1E gene. They are strongly expressed in cortex, hippocampus, striatum, amygdala and interpeduncular nucleus.

<span class="mw-page-title-main">L-type calcium channel</span> Family of transport proteins

The L-type calcium channel is part of the high-voltage activated family of voltage-dependent calcium channel. "L" stands for long-lasting referring to the length of activation. This channel has four isoforms: Cav1.1, Cav1.2, Cav1.3, and Cav1.4.

Ca<sub>v</sub>2.1 Protein-coding gene in the species Homo sapiens

Cav2.1, also called the P/Q voltage-dependent calcium channel, is a calcium channel found mainly in the brain. Specifically, it is found on the presynaptic terminals of neurons in the brain and cerebellum. Cav2.1 plays an important role in controlling the release of neurotransmitters between neurons. It is composed of multiple subunits, including alpha-1, beta, alpha-2/delta, and gamma subunits. The alpha-1 subunit is the pore-forming subunit, meaning that the calcium ions flow through it. Different kinds of calcium channels have different isoforms (versions) of the alpha-1 subunit. Cav2.1 has the alpha-1A subunit, which is encoded by the CACNA1A gene. Mutations in CACNA1A have been associated with various neurologic disorders, including familial hemiplegic migraine, episodic ataxia type 2, and spinocerebellar ataxia type 6.

Ca<sub>v</sub>1.4 Protein-coding gene in the species Homo sapiens

Cav1.4 also known as the calcium channel, voltage-dependent, L type, alpha 1F subunit (CACNA1F), is a human gene.

Ca<sub>v</sub>1.1 Mammalian protein found in Homo sapiens

Cav1.1 also known as the calcium channel, voltage-dependent, L type, alpha 1S subunit, (CACNA1S), is a protein which in humans is encoded by the CACNA1S gene. It is also known as CACNL1A3 and the dihydropyridine receptor.

<span class="mw-page-title-main">CACNB4</span> Protein-coding gene in the species Homo sapiens

Voltage-dependent L-type calcium channel subunit beta-4 is a protein that in humans is encoded by the CACNB4 gene.

<span class="mw-page-title-main">CACNB1</span> Protein-coding gene in the species Homo sapiens

Voltage-dependent L-type calcium channel subunit beta-1 is a protein that in humans is encoded by the CACNB1 gene.

Ca<sub>v</sub>1.3 Protein-coding gene in the species Homo sapiens

Calcium channel, voltage-dependent, L type, alpha 1D subunit is a protein that in humans is encoded by the CACNA1D gene. Cav1.3 channels belong to the Cav1 family, which form L-type calcium currents and are sensitive to selective inhibition by dihydropyridines (DHP).

<span class="mw-page-title-main">CACNB3</span> Protein-coding gene in the species Homo sapiens

Voltage-dependent L-type calcium channel subunit beta-3 is a protein that in humans is encoded by the CACNB3 gene.

<span class="mw-page-title-main">CACNA2D1</span> Protein-coding gene in the species Homo sapiens

Voltage-dependent calcium channel subunit alpha-2/delta-1 is a protein that in humans is encoded by the CACNA2D1 gene.

<span class="mw-page-title-main">Calcium channel, voltage-dependent, T type, alpha 1H subunit</span> Protein-coding gene in the species Homo sapiens

Calcium channel, voltage-dependent, T type, alpha 1H subunit, also known as CACNA1H, is a protein which in humans is encoded by the CACNA1H gene.

<span class="mw-page-title-main">CACNG4</span> Protein-coding gene in the species Homo sapiens

Voltage-dependent calcium channel gamma-4 subunit is a protein that in humans is encoded by the CACNG4 gene.

<span class="mw-page-title-main">CACNA2D2</span> Protein-coding gene in the species Homo sapiens

Voltage-dependent calcium channel subunit alpha2delta-2 is a protein that in humans is encoded by the CACNA2D2 gene.

<span class="mw-page-title-main">CACNA1I</span> Protein-coding gene in the species Homo sapiens

Calcium channel, voltage-dependent, T type, alpha 1I subunit, also known as CACNA1I or Cav3.3 is a protein which in humans is encoded by the CACNA1I gene.

<span class="mw-page-title-main">CACNA1B</span> Protein-coding gene in the species Homo sapiens

The voltage-dependent N-type calcium channel subunit alpha-1B is a protein that in humans is encoded by the CACNA1B gene. The α1B protein, together with β and α2δ subunits forms N-type calcium channel PMID 26386135. It is a R-type calcium channel.

<span class="mw-page-title-main">CACNA1G</span> Protein-coding gene in the species Homo sapiens

Calcium channel, voltage-dependent, T type, alpha 1G subunit, also known as CACNA1G or Cav3.1 is a protein which in humans is encoded by the CACNA1G gene. It is one of the primary targets in the pharmacology of absence seizure.

miR-137

In molecular biology, miR-137 is a short non-coding RNA molecule that functions to regulate the expression levels of other genes by various mechanisms. miR-137 is located on human chromosome 1p22 and has been implicated to act as a tumor suppressor in several cancer types including colorectal cancer, squamous cell carcinoma and melanoma via cell cycle control.

<span class="mw-page-title-main">CACNA2D4</span>

Calcium channel, voltage-dependent, alpha 2/delta subunit 4 is a protein that in humans is encoded by the CACNA2D4 gene.

References

  1. 1 2 3 GRCh38: Ensembl release 89: ENSG00000157445 - Ensembl, May 2017
  2. 1 2 3 GRCm38: Ensembl release 89: ENSMUSG00000021991 - Ensembl, May 2017
  3. "Human PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  4. "Mouse PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  5. "Entrez Gene: Calcium channel, voltage-dependent, alpha 2/delta subunit 3".
  6. Palmieri C, Rudraraju B, Monteverde M, Lattanzio L, Gojis O, Brizio R, Garrone O, Merlano M, Syed N, Lo Nigro C, Crook T (2012). "Methylation of the calcium channel regulatory subunit α2δ-3 (CACNA2D3) predicts site-specific relapse in oestrogen receptor-positive primary breast carcinomas". Br. J. Cancer. 107 (2): 375–81. doi:10.1038/bjc.2012.231. PMC   3394973 . PMID   22644305.
  7. Wanajo A, Sasaki A, Nagasaki H, Shimada S, Otsubo T, Owaki S, Shimizu Y, Eishi Y, Kojima K, Nakajima Y, Kawano T, Yuasa Y, Akiyama Y (2008). "Methylation of the calcium channel-related gene, CACNA2D3, is frequent and a poor prognostic factor in gastric cancer". Gastroenterology. 135 (2): 580–90. doi:10.1053/j.gastro.2008.05.041. PMID   18588891.
  8. Yuasa Y, Nagasaki H, Akiyama Y, Hashimoto Y, Takizawa T, Kojima K, Kawano T, Sugihara K, Imai K, Nakachi K (2009). "DNA methylation status is inversely correlated with green tea intake and physical activity in gastric cancer patients". Int. J. Cancer. 124 (11): 2677–82. doi:10.1002/ijc.24231. PMID   19170207. S2CID   46627170.

Further reading

This article incorporates text from the United States National Library of Medicine, which is in the public domain.