CIFMS

Last updated

Continuous Improvement and Focused Monitoring System is a process management and quality management concept, which offers companies "quick wins" benefits, which enable them to produce high quality products with shorter lead-time. [1] [2]

A CIFMS is not a general software application that can be readily used for any given manufacturing company, it is a uniquely designed system specifically tailored to a given company guided by a method. Therefore the most crucial process in developing and implementing an efficient CIFMS is selecting a design method which brings forth a multi-criteria decision analysis (MCDM) problem with varied degrees of interdependencies among the decision components. [3]

A key principle of an effective Continuous Improvement and Focused Monitoring System is input and feedback from a diverse group of stakeholders.

Related Research Articles

Focused improvement in the theory of constraints is an ensemble of activities aimed at elevating the performance of any system, especially a business system, with respect to its goal by eliminating its constraints one by one and by not working on non-constraints.

Lean manufacturing Production methodology in which time is reduced as much as possible

Lean manufacturing is a production method aimed primarily at reducing times within the production system as well as response times from suppliers and to customers.

Kaizen, the Sino-Japanese word for "improvement", is a concept referring to business activities that continuously improve all functions and involve all employees from the CEO to the assembly line workers. Kaizen also applies to processes, such as purchasing and logistics, that cross organizational boundaries into the supply chain. It has been applied in healthcare, psychotherapy, life coaching, government, and banking.

Statistical process control (SPC) is a method of quality control which employs statistical methods to monitor and control a process. This helps to ensure that the process operates efficiently, producing more specification-conforming products with less waste. SPC can be applied to any process where the "conforming product" output can be measured. Key tools used in SPC include run charts, control charts, a focus on continuous improvement, and the design of experiments. An example of a process where SPC is applied is manufacturing lines.

Design for Six Sigma (DFSS) is an Engineering design process, business process management method related to traditional Six Sigma. It is used in many industries, like finance, marketing, basic engineering, process industries, waste management, and electronics. It is based on the use of statistical tools like linear regression and enables empirical research similar to that performed in other fields, such as social science. While the tools and order used in Six Sigma require a process to be in place and functioning, DFSS has the objective of determining the needs of customers and the business, and driving those needs into the product solution so created. It is used for product or process design in contrast with process improvement. Measurement is the most important part of most Six Sigma or DFSS tools, but whereas in Six Sigma measurements are made from an existing process, DFSS focuses on gaining a deep insight into customer needs and using these to inform every design decision and trade-off.

Alarm management is the application of human factors along with instrumentation engineering and systems thinking to manage the design of an alarm system to increase its usability. Most often the major usability problem is that there are too many alarms annunciated in a plant upset, commonly referred to as alarm flood, since it is so similar to a flood caused by excessive rainfall input with a basically fixed drainage output capacity. However, there can also be other problems with an alarm system such as poorly designed alarms, improperly set alarm points, ineffective annunciation, unclear alarm messages, etc. Poor alarm management is one of the leading causes of unplanned downtime, contributing to over $20B in lost production every year, and of major industrial incidents such as the one in Texas City. Developing good alarm management practices is not a discrete activity, but more of a continuous process.

Multiple-criteria decision analysis

Multiple-criteria decision-making (MCDM) or multiple-criteria decision analysis (MCDA) is a sub-discipline of operations research that explicitly evaluates multiple conflicting criteria in decision making. Conflicting criteria are typical in evaluating options: cost or price is usually one of the main criteria, and some measure of quality is typically another criterion, easily in conflict with the cost. In purchasing a car, cost, comfort, safety, and fuel economy may be some of the main criteria we consider – it is unusual that the cheapest car is the most comfortable and the safest one. In portfolio management, managers are interested in getting high returns while simultaneously reducing risks; however, the stocks that have the potential of bringing high returns typically carry high risk of losing money. In a service industry, customer satisfaction and the cost of providing service are fundamental conflicting criteria.

Quality management ensures that an organization, product or service is consistent. It has four main components: quality planning, quality assurance, quality control and quality improvement. Quality management is focused not only on product and service quality, but also on the means to achieve it. Quality management, therefore, uses quality assurance and control of processes as well as products to achieve more consistent quality. What a customer wants and is willing to pay for it determines quality. It is a written or unwritten commitment to a known or unknown consumer in the market. Thus, quality can be defined as fitness for intended use or, in other words, how well the product performs its intended function.

Operations management

Operations management is an area of management concerned with designing and controlling the process of production and redesigning business operations in the production of goods or services. It involves the responsibility of ensuring that business operations are efficient in terms of using as few resources as needed and effective in meeting customer requirements.

The concept of Operational Excellence was first introduced in the early 1970's by Dr. Joseph M. Juran while teaching Japanese business leaders how to improve quality. It was formalized in the United States in the 1980's in response to 'the crisis" amidst large legacy companies whose market share was shrinking due to quality goods imported from Japan.

The following outline is provided as an overview of and topical guide to management:

Corrective and preventive action consists of improvements to an organization's processes taken to eliminate causes of non-conformities or other undesirable situations. It is usually a set of actions, laws or regulations required by an organization to take in manufacturing, documentation, procedures, or systems to rectify and eliminate recurring non-conformance. Non-conformance is identified after systematic evaluation and analysis of the root cause of the non-conformance. Non-conformance may be a market complaint or customer complaint or failure of machinery or a quality management system, or misinterpretation of written instructions to carry out work. The corrective and preventive action is designed by a team that includes quality assurance personnel and personnel involved in the actual observation point of non-conformance. It must be systematically implemented and observed for its ability to eliminate further recurrence of such non-conformation. The Eight disciplines problem solving method, or 8D framework, can be used as an effective method of structuring a CAPA.

The Toyota Way is a set of principles and behaviors that underlie the Toyota Motor Corporation's managerial approach and production system. Toyota first summed up its philosophy, values, and manufacturing ideals in 2001, calling it "The Toyota Way 2001". It consists of principles in two key areas: continuous improvement and respect for people.

Quality engineering is the discipline of engineering concerned with the principles and practice of product and service quality assurance and control. In software development, it is the management, development, operation and maintenance of IT systems and enterprise architectures with a high quality standard.

In business, engineering, and manufacturing, quality – or high quality – has a pragmatic interpretation as the non-inferiority or superiority of something; it's also defined as being suitable for its intended purpose while satisfying customer expectations. Quality is a perceptual, conditional, and somewhat subjective attribute and may be understood differently by different people. Consumers may focus on the specification quality of a product/service, or how it compares to competitors in the marketplace. Producers might measure the conformance quality, or degree to which the product/service was produced correctly. Support personnel may measure quality in the degree that a product is reliable, maintainable, or sustainable.

A continual improvement process, also often called a continuous improvement process, is an ongoing effort to improve products, services, or processes. These efforts can seek "incremental" improvement over time or "breakthrough" improvement all at once. Delivery processes are constantly evaluated and improved in the light of their efficiency, effectiveness and flexibility.

A glossary of terms relating to project management and consulting.

Business process management (BPM) is the discipline in which people use various methods to discover, model, analyze, measure, improve, optimize, and automate business processes. Any combination of methods used to manage a company's business processes is BPM. Processes can be structured and repeatable or unstructured and variable. Though not required, enabling technologies are often used with BPM.

Total Productive Maintenance (TPM) started as a method of physical asset management focused on maintaining and improving manufacturing machinery, in order to reduce the operating cost to an organization. After the PM award was created and awarded to Nippon Denso in 1971, the JIPM, expanded it to include 8 pillars of TPM that required involvement from all areas of manufacturing in the concepts of lean Manufacturing. TPM is designed to disseminate the responsibility for maintenance and machine performance, improving employee engagement and teamwork within management, engineering, maintenance, and operations.

Operations management for services has the functional responsibility for producing the services of an organization and providing them directly to its customers. It specifically deals with decisions required by operations managers for simultaneous production and consumption of an intangible product. These decisions concern the process, people, information and the system that produces and delivers the service. It differs from operations management in general, since the processes of service organizations differ from those of manufacturing organizations.

References

  1. Hassan, Kikuo, Haleh, Nezu (2005). A model for selecting a CIFMS design method. Emerald Group Publishing Limited. ISSN   1741-038X.
  2. Waldner, Jean-Baptiste (September 1992). Principles of Computer-Integrated Manufacturing (1st ed.). John Wiley & Sons. ISBN   0-471-93450-X.
  3. NB : the MCDM problem can be formulated so as to minimize the distance between a facility and a given set of points. The efficient points of this problem are candidates for optimal solutions to many location problems.