CTAG1B

Last updated
CTAG1B
PDB 2bnq EBI.jpg
Available structures
PDB Human UniProt search: PDBe RCSB
Identifiers
Aliases CTAG1B , CT6.1, CTAG, CTAG1, ESO1, LAGE-2, LAGE2B, NY-ESO-1, cancer/testis antigen 1B
External IDs OMIM: 300156 HomoloGene: 133254 GeneCards: CTAG1B
Orthologs
SpeciesHumanMouse
Entrez
Ensembl
UniProt
RefSeq (mRNA)

NM_001327

n/a

RefSeq (protein)

NP_640343
NP_001318

n/a

Location (UCSC) Chr X: 154.62 – 154.62 Mb n/a
PubMed search [2] n/a
Wikidata
View/Edit Human

Cancer/testis antigen 1 also known as LAGE2 or LAGE2B is a protein that in humans is encoded by the CTAG1B gene. [3] [4] [5] It is most often referenced by its alias NY-ESO-1.

Cancer/Testis Antigen 1B is a protein belonging to the family of Cancer Testis Antigens (CTA) that are expressed in a variety of malignant tumours at the mRNA and protein levels, but also restricted to testicular germ cells in normal adult tissues. A clone of CTAG gene was originally identified by immunological methods in oesophageal carcinoma using patient serum. [6] The aberrant re-expression of CTAs is induced by molecular mechanisms including DNA demethylation, histone post-translational modification, and microRNA-mediated regulation. The effect of DNA demethylation is evident by the capability of demethylating agents, such as 5-aza-2-deoxycytidine, to induce CTAs re-expression in tumour cells but not in normal epithelial cells.

Gene

CTAG1B is located on the long arm of chromosome X (Xq28), [6] containing three exons that are approximately 8 Kb in length. CTAG1B is found to have a neighbouring gene of identical sequence: CTAG1A.

Protein

The gene encodes a 180-amino acid polypeptide, expressed from 18 weeks during embryonic development until birth in human fetal testis. It is also strongly expressed in spermatogonia and in primary spermatocytes of adult testis, but not in post-meiotic cells or testicular somatic cells. [7] Structurally, CTAG1B features a glycine-rich N-terminal region, as well as a hydrophobic C-terminal region with a Pcc-1 domain. The protein has been shown to be homologous to two other CTAs located in the same region: LAGE-1 and ESO3. [8] The exact function of CTAG1B remains to be unknown. Studies have suggested its role in cell cycle progression and growth, although not being elusive, through the analysis of CTAG1B's structure and expression pattern. The coexpression of CTAG1B with melanoma antigen gene C1 (MAGE-C1), another CTA, further supports its involvement in cell cycle regulation and apoptosis, due to the role of MAGE proteins in these processes. Moreover, its restricted expression pattern in male germ cells suggests its role in germ cell self-renewal or differentiation, supported by the nuclear localization of CTAG1B in mesenchymal stem cells in contrast to its cytoplasmic expression in cancer cells. [9]

Humoral Immune Response

It is also believed that cancer-testis antigens are immunogenic proteins, since many members of the family have been shown to induce spontaneous cellular and humoral immune responses in patients with advanced stage tumours. The first reported simultaneous humoral and cellular response against CTAG1B was from a metastatic melanoma patient. 3 HLA-A2 restricted epitopes in CTAG1B were identified as the recognition sites for CD8+ cytotoxic T lymphocytes. [10] Integrated humoral immune responses against CTAG1B have been detected in patients with: Multiple myeloma, [11] breast cancer, [12] non small-cell lung carcinoma, [13] and ovarian cancer. [14] As such, CTAG1B is believed to be a promising candidate for cancer immunotherapy due to its exclusive expression in normal tissues and re expression in tumour cells, as well as its high immunogenicity. These features also suggest a limited off-target toxicity of CTAG1B-based cancer therapies. The immunisation with CTAG1B could be a successful approach to induce antigen specific immune responses in cancer patients. Up until May 2018, there have been 12 clinical trials registered using a CTAG1B cancer vaccine, 23 using modified T cells, and 13 using combinatorial immunotherapy. [8]

Examining the expression of a number of CTA genes in 23 samples of sporadic medullary thyroid carcinoma has revealed that CTAG1B expression significantly correlates with tumour recurrence. A humoral response against this CTA was detected in 54.5% of CTAG1B-expressing patients, and in 1 of 6 patients with an CTAG1B-negative tumour. Anti-CTAG1B antibodies were present in 35.7%, demonstrating that medullary thyroid carcinoma is associated with humoral immune response to CTAG1B. [15] Another study has shown that CTAG1B binding to CALR on macrophages and dendritic cells provides a link between CTAG1B, the innate immune system, and possibly the adaptive immune response against CTAG1B. [16]

Related Research Articles

Immunotherapy or biological therapy is the treatment of disease by activating or suppressing the immune system. Immunotherapies designed to elicit or amplify an immune response are classified as activation immunotherapies, while immunotherapies that reduce or suppress are classified as suppression immunotherapies. Immunotherapy is under preliminary research for its potential to treat various forms of cancer.

Heat shock proteins (HSP) are a family of proteins produced by cells in response to exposure to stressful conditions. They were first described in relation to heat shock, but are now known to also be expressed during other stresses including exposure to cold, UV light and during wound healing or tissue remodeling. Many members of this group perform chaperone functions by stabilizing new proteins to ensure correct folding or by helping to refold proteins that were damaged by the cell stress. This increase in expression is transcriptionally regulated. The dramatic upregulation of the heat shock proteins is a key part of the heat shock response and is induced primarily by heat shock factor (HSF). HSPs are found in virtually all living organisms, from bacteria to humans.

A cancer vaccine is a vaccine that either treats existing cancer or prevents development of cancer. Vaccines that treat existing cancer are known as therapeutic cancer vaccines or tumor antigen vaccines. Some of the vaccines are "autologous", being prepared from samples taken from the patient, and are specific to that patient.

<span class="mw-page-title-main">CD40 (protein)</span> Mammalian protein found in Homo sapiens

Cluster of differentiation 40, CD40 is a type I transmembrane protein found on antigen-presenting cells and is required for their activation. The binding of CD154 (CD40L) on TH cells to CD40 activates antigen presenting cells and induces a variety of downstream effects.

<span class="mw-page-title-main">Cancer immunology</span> Study of the role of the immune system in cancer

Cancer immunology is an interdisciplinary branch of biology that is concerned with understanding the role of the immune system in the progression and development of cancer; the most well known application is cancer immunotherapy, which utilises the immune system as a treatment for cancer. Cancer immunosurveillance and immunoediting are based on protection against development of tumors in animal systems and (ii) identification of targets for immune recognition of human cancer.

<span class="mw-page-title-main">PD-L1</span> Mammalian protein found in Homo sapiens

Programmed death-ligand 1 (PD-L1) also known as cluster of differentiation 274 (CD274) or B7 homolog 1 (B7-H1) is a protein that in humans is encoded by the CD274 gene.

An oncoantigen is a surface or soluble tumor antigen that supports tumor growth. A major problem of cancer immunotherapy is the selection of tumor cell variants that escape immune recognition. The notion of oncoantigen was set forth in the context of cancer immunoprevention to define a class of persistent tumor antigens not prone to escape from immune recognition.

<span class="mw-page-title-main">MAGEA3</span> Protein-coding gene in humans

Melanoma-associated antigen 3 (MAGE-A3) is a protein that in humans is encoded by the MAGEA3 gene.

<span class="mw-page-title-main">SSX2</span> Mammalian protein found in Homo sapiens

Protein SSX2 is a protein that in humans is encoded by the SSX2 gene.

<span class="mw-page-title-main">MAGEA4</span> Protein-coding gene in humans

Melanoma-associated antigen 4 is a protein that in humans is encoded by the MAGEA4 gene.

<span class="mw-page-title-main">Lymphocyte-activation gene 3</span>

Lymphocyte-activation gene 3, also known as LAG-3, is a protein which in humans is encoded by the LAG3 gene. LAG3, which was discovered in 1990 and was designated CD223 after the Seventh Human Leucocyte Differentiation Antigen Workshop in 2000, is a cell surface molecule with diverse biologic effects on T cell function. It is an immune checkpoint receptor and as such is the target of various drug development programs by pharmaceutical companies seeking to develop new treatments for cancer and autoimmune disorders. In soluble form it is also being developed as a cancer drug in its own right.

<span class="mw-page-title-main">MAGEC2</span> Protein-coding gene in humans

Melanoma-associated antigen C2 is a protein that in humans is encoded by the MAGEC2 gene.

<span class="mw-page-title-main">FATE1</span> Protein-coding gene in the species Homo sapiens

Fetal and Adult Testis-Expressed 1, encoded by the FATE1 gene in humans, is a protein identified as a cancer-testis antigen (CTA) in hepatocellular carcinomas and gastric and colon cancers. It is testis-specific in the fetus. In adults, it is expressed predominantly in the testis and adrenal glands, with some expression in the lungs, heart, kidneys and throughout the brain.

<span class="mw-page-title-main">XAGE1D</span> Protein-coding gene in humans

G antigen family D member 2 is a protein that in humans is encoded by the XAGE1D gene.

<span class="mw-page-title-main">Sperm protein associated with the nucleus, X-linked, family member A1</span> Protein-coding gene in the species Homo sapiens

Sperm protein associated with the nucleus on the X chromosome A is a protein that in humans is encoded by the SPANXA1 gene.

<span class="mw-page-title-main">SSX5</span> Protein-coding gene in the species Homo sapiens

Protein SSX5 is a protein that in humans is encoded by the SSX5 gene.

Immunoediting is a dynamic process that consists of immunosurveillance and tumor progression. It describes the relation between the tumor cells and the immune system. It is made up of three phases: elimination, equilibrium, and escape.

Cancer/testis (CT) antigens are a group of proteins united by their importance in development and in cancer immunotherapy. In general, expression of these proteins is restricted to male germ cells in the adult animal. However, in cancer these developmental antigens are often re-expressed and can serve as a locus of immune activation. Thus, they are often classified as tumor antigens. The expression of CT antigens in various malignancies is heterogeneous and often correlates with tumor progression. CT antigens have been described in melanoma, liver cancer, lung cancer, bladder cancer, and pediatric tumors such as neuroblastoma. Gametogenesis offers an important role for many of these antigens in the differentiation, migration, and cell division of primordial germ cells, spermatogonia spermatocytes and spermatids. Because of their tumor-restricted expression and strong in vivo immunogenicity, CT antigens are identified as ideal targets for tumor specific immunotherapeutic approaches and prompted the development of several clinical trials of CT antigens-based vaccine therapy. CT antigens have been found to have at least 70 families so far, including about 140 members, most of which are expressed during spermatogenesis. Their expression are mainly regulated by epigenetic events, specifically, DNA methylation.

The Immunologic Constant of Rejection (ICR), is a notion introduced by biologists to group a shared set of genes expressed in tissue destructive-pathogenic conditions like cancer and infection, along a diverse set of physiological circumstances of tissue damage or organ failure, including autoimmune disease or allograft rejection. The identification of shared mechanisms and phenotypes by distinct immune pathologies, marked as a hallmarks or biomarkers, aids in the identification of novel treatment options, without necessarily assessing patients phenomenologies individually.

Whole-cell vaccines are a type of vaccine that has been prepared in the laboratory in such a way to express immune cells such as cytokines, chemokines and other costimulatory molecules. When administered to the patients, these molecules will stimulate the immune system of the patient. The whole-cell vaccine simultaneously targets multiple antigens to activate the immune system and induces antigen-specific T-cell responses.

References

  1. 1 2 3 GRCh38: Ensembl release 89: ENSG00000184033 - Ensembl, May 2017
  2. "Human PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  3. Chen YT, Boyer AD, Viars CS, Tsang S, Old LJ, Arden KC (Jun 1998). "Genomic cloning and localization of CTAG, a gene encoding an autoimmunogenic cancer-testis antigen NY-ESO-1, to human chromosome Xq28". Cytogenetics and Cell Genetics. 79 (3–4): 237–40. doi:10.1159/000134734. PMID   9605863.
  4. Aradhya S, Bardaro T, Galgóczy P, Yamagata T, Esposito T, Patlan H, Ciccodicola A, Munnich A, Kenwrick S, Platzer M, D'Urso M, Nelson DL (October 2001). "Multiple pathogenic and benign genomic rearrangements occur at a 35 kb duplication involving the NEMO and LAGE2 genes". Human Molecular Genetics. 10 (22): 2557–67. doi: 10.1093/hmg/10.22.2557 . PMID   11709543.
  5. "Entrez Gene: CTAG1B cancer/testis antigen 1B".
  6. 1 2 Chen YT, Scanlan MJ, Sahin U, Türeci O, Gure AO, Tsang S, Williamson B, Stockert E, Pfreundschuh M, Old LJ (March 1997). "A testicular antigen aberrantly expressed in human cancers detected by autologous antibody screening". Proceedings of the National Academy of Sciences of the United States of America. 94 (5): 1914–8. Bibcode:1997PNAS...94.1914C. doi: 10.1073/pnas.94.5.1914 . PMC   20017 . PMID   9050879.
  7. Satie AP, Rajpert-De Meyts E, Spagnoli GC, Henno S, Olivo L, Jacobsen GK, Rioux-Leclercq N, Jégou B, Samson M (June 2002). "The cancer-testis gene, NY-ESO-1, is expressed in normal fetal and adult testes and in spermatocytic tumors and testicular carcinoma in situ". Laboratory Investigation; A Journal of Technical Methods and Pathology. 82 (6): 775–80. doi: 10.1097/01.LAB.0000017169.26718.5F . PMID   12065688.
  8. 1 2 Thomas R, Al-Khadairi G, Roelands J, Hendrickx W, Dermime S, Bedognetti D, Decock J (2018). "NY-ESO-1 Based Immunotherapy of Cancer: Current Perspectives". Frontiers in Immunology. 9: 947. doi: 10.3389/fimmu.2018.00947 . PMC   5941317 . PMID   29770138.
  9. Cho HJ, Caballero OL, Gnjatic S, Andrade VC, Colleoni GW, Vettore AL, Outtz HH, Fortunato S, Altorki N, Ferrera CA, Chua R, Jungbluth AA, Chen YT, Old LJ, Simpson AJ (December 2006). "Physical interaction of two cancer-testis antigens, MAGE-C1 (CT7) and NY-ESO-1 (CT6)". Cancer Immunity. 6: 12. PMID   17137291.
  10. Jäger E, Chen YT, Drijfhout JW, Karbach J, Ringhoffer M, Jäger D, Arand M, Wada H, Noguchi Y, Stockert E, Old LJ, Knuth A (January 1998). "Simultaneous humoral and cellular immune response against cancer-testis antigen NY-ESO-1: definition of human histocompatibility leukocyte antigen (HLA)-A2-binding peptide epitopes". The Journal of Experimental Medicine. 187 (2): 265–70. doi:10.1084/jem.187.2.265. PMC   2212106 . PMID   9432985.
  11. Toor AA, Payne KK, Chung HM, Sabo RT, Hazlett AF, Kmieciak M, Sanford K, Williams DC, Clark WB, Roberts CH, McCarty JM, Manjili MH (September 2012). "Epigenetic induction of adaptive immune response in multiple myeloma: sequential azacitidine and lenalidomide generate cancer testis antigen-specific cellular immunity". British Journal of Haematology. 158 (6): 700–11. doi:10.1111/j.1365-2141.2012.09225.x. PMC   4968567 . PMID   22816680.
  12. Ademuyiwa FO, Bshara W, Attwood K, Morrison C, Edge SB, Karpf AR, James SA, Ambrosone CB, O'Connor TL, Levine EG, Miliotto A, Ritter E, Ritter G, Gnjatic S, Odunsi K (2012). "NY-ESO-1 cancer testis antigen demonstrates high immunogenicity in triple negative breast cancer". PLOS ONE. 7 (6): e38783. Bibcode:2012PLoSO...738783A. doi: 10.1371/journal.pone.0038783 . PMC   3386262 . PMID   22761704.
  13. Nakamura Y, Noguchi Y, Satoh E, Uenaka A, Sato S, Kitazaki T, Kanda T, Soda H, Nakayama E, Kohno S (July 2009). "Spontaneous remission of a non-small cell lung cancer possibly caused by anti-NY-ESO-1 immunity". Lung Cancer. 65 (1): 119–22. doi:10.1016/j.lungcan.2008.12.020. hdl: 10069/23183 . PMID   19193472.
  14. Matsuzaki J, Gnjatic S, Mhawech-Fauceglia P, Beck A, Miller A, Tsuji T, Eppolito C, Qian F, Lele S, Shrikant P, Old LJ, Odunsi K (April 2010). "Tumor-infiltrating NY-ESO-1-specific CD8+ T cells are negatively regulated by LAG-3 and PD-1 in human ovarian cancer". Proceedings of the National Academy of Sciences of the United States of America. 107 (17): 7875–80. Bibcode:2010PNAS..107.7875M. doi: 10.1073/pnas.1003345107 . PMC   2867907 . PMID   20385810.
  15. Maio M, Coral S, Sigalotti L, Elisei R, Romei C, Rossi G, Cortini E, Colizzi F, Fenzi G, Altomonte M, Pinchera A, Vitale M (February 2003). "Analysis of cancer/testis antigens in sporadic medullary thyroid carcinoma: expression and humoral response to NY-ESO-1". The Journal of Clinical Endocrinology and Metabolism. 88 (2): 748–54. doi: 10.1210/jc.2002-020830 . PMID   12574209.
  16. Zeng G, Aldridge ME, Tian X, Seiler D, Zhang X, Jin Y, Rao J, Li W, Chen D, Langford MP, Duggan C, Belldegrun AS, Dubinett SM (September 2006). "Dendritic cell surface calreticulin is a receptor for NY-ESO-1: direct interactions between tumor-associated antigen and the innate immune system". Journal of Immunology. 177 (6): 3582–9. doi: 10.4049/jimmunol.177.6.3582 . PMID   16951317.

Further reading