CXCR4 antagonist

Last updated

A CXCR4 antagonist is a substance which blocks the CXCR4 receptor and prevent its activation. Blocking the receptor stops the receptor's ligand, CXCL12, from binding which prevents downstream effects. CXCR4 antagonists are especially important for hindering cancer progression because one of the downstream effects initiated by CXCR4 receptor activation is cell movement which helps the spread of cancer, known as metastasis. The CXCR4 receptor has been targeted by antagonistic substances since being identified as a co-receptor in HIV and assisting the development of cancer. [1] Macrocyclic ligands have been utilised as CXCR4 antagonists. [2]

Plerixafor is an example of a CXCR4 antagonist, and has approvals (e.g. US FDA 2008) for clinical use (to mobilize hematopoietic stem cells).

BL-8040 is a CXCR4 antagonist that has undergone clinical trials (e.g. in various leukemias [3] ), with one planned for pancreatic cancer (in combination with pembrolizumab). [4] Previously called BKT140, it is a synthetic cyclic 14-residue peptide with an aromatic ring. [5] In a 2018 mouse tumor model study, BL-8040 treatment enhanced anti-tumor immune response potentially by increasing the CD8+ T-cells in the tumor microenvironment. [6]


Mavorixafor (Xolremdi) is a small-molecule drug that targets CXCR4 mutations, it was approved for medical use in the United States in April of 2024 for the treatment of WHIM syndrome. [7]

Related Research Articles

In biology, chimeric antigen receptors (CARs)—also known as chimeric immunoreceptors, chimeric T cell receptors or artificial T cell receptors—are receptor proteins that have been engineered to give T cells the new ability to target a specific antigen. The receptors are chimeric in that they combine both antigen-binding and T cell activating functions into a single receptor.

<span class="mw-page-title-main">Cancer immunotherapy</span> Artificial stimulation of the immune system to treat cancer

Cancer immunotherapy (immuno-oncotherapy) is the stimulation of the immune system to treat cancer, improving the immune system's natural ability to fight the disease. It is an application of the fundamental research of cancer immunology (immuno-oncology) and a growing subspecialty of oncology.

<span class="mw-page-title-main">CXCR4</span> Protein

C-X-C chemokine receptor type 4 (CXCR-4) also known as fusin or CD184 is a protein that in humans is encoded by the CXCR4 gene. The protein is a CXC chemokine receptor.

<span class="mw-page-title-main">CD40 (protein)</span> Mammalian protein found in humans

Cluster of differentiation 40, CD40 is a type I transmembrane protein found on antigen-presenting cells and is required for their activation. The binding of CD154 (CD40L) on TH cells to CD40 activates antigen presenting cells and induces a variety of downstream effects.

<span class="mw-page-title-main">Targeted therapy</span> Type of therapy

Targeted therapy or molecularly targeted therapy is one of the major modalities of medical treatment (pharmacotherapy) for cancer, others being hormonal therapy and cytotoxic chemotherapy. As a form of molecular medicine, targeted therapy blocks the growth of cancer cells by interfering with specific targeted molecules needed for carcinogenesis and tumor growth, rather than by simply interfering with all rapidly dividing cells. Because most agents for targeted therapy are biopharmaceuticals, the term biologic therapy is sometimes synonymous with targeted therapy when used in the context of cancer therapy. However, the modalities can be combined; antibody-drug conjugates combine biologic and cytotoxic mechanisms into one targeted therapy.

<span class="mw-page-title-main">KRAS</span> Protein-coding gene in humans

KRAS is a gene that provides instructions for making a protein called K-Ras, a part of the RAS/MAPK pathway. The protein relays signals from outside the cell to the cell's nucleus. These signals instruct the cell to grow and divide (proliferate) or to mature and take on specialized functions (differentiate). It is called KRAS because it was first identified as a viral oncogene in the KirstenRAt Sarcoma virus. The oncogene identified was derived from a cellular genome, so KRAS, when found in a cellular genome, is called a proto-oncogene.

<span class="mw-page-title-main">Plerixafor</span> Chemical compound

Plerixafor, sold under the brand name Mozobil, is an immunostimulant used to mobilize hematopoietic stem cells in cancer patients into the bloodstream. The stem cells are then extracted from the blood and transplanted back to the patient. The drug was developed by AnorMED, which was subsequently bought by Genzyme.

<span class="mw-page-title-main">Sigma-2 receptor</span> Protein-coding gene in the species Homo sapiens

The sigma-2 receptor (σ2R) is a sigma receptor subtype that has attracted attention due to its involvement in diseases such as neurological diseases, neurodegenerative, neuro-ophthalmic and cancer. It is currently under investigation for its potential diagnostic and therapeutic uses.

<span class="mw-page-title-main">WHIM syndrome</span> Medical condition

WHIM syndrome is a rare congenital immunodeficiency disorder characterized by chronic noncyclic neutropenia.

<span class="mw-page-title-main">Axitinib</span> Chemical compound

Axitinib, sold under the brand name Inlyta, is a small molecule tyrosine kinase inhibitor developed by Pfizer. It has been shown to significantly inhibit growth of breast cancer in animal (xenograft) models and has shown partial responses in clinical trials with renal cell carcinoma (RCC) and several other tumour types.

Demethylating agents are chemical substances that can inhibit methylation, resulting in the expression of the previously hypermethylated silenced genes. Cytidine analogs such as 5-azacytidine (azacitidine) and 5-azadeoxycytidine (decitabine) are the most commonly used demethylating agents. They work by inhibiting DNA methyltransferases. Both compounds have been approved in the treatment of myelodysplastic syndrome (MDS) by Food and Drug Administration (FDA) in United States. Azacitidine and decitabine are marketed as Vidaza and Dacogen respectively. Azacitidine is the first drug to be approved by FDA for treating MDS and has been given orphan drug status. Procaine is a DNA-demethylating agent with growth-inhibitory effects in human cancer cells. There are many other demethylating agents that can be used to inhibit the growth of other diseases.

A CDK inhibitor is any chemical that inhibits the function of CDKs. They are used to treat cancers by preventing overproliferation of cancer cells. The US FDA approved the first drug of this type, palbociclib (Ibrance), a CDK4/6 inhibitor, in February 2015, for use in postmenopausal women with breast cancer that is estrogen receptor positive and HER2 negative. While there are multiple cyclin/CDK complexes regulating the cell cycle, CDK inhibitors targeting CDK4/6 have been the most successful; four CDK4/6 inhibitors have been FDA approved. No inhibitors targeting other CDKs have been FDA approved, but several compounds are in clinical trials.

<span class="mw-page-title-main">Midostaurin</span> Chemical compound

Midostaurin, sold under the brand name Rydapt & Tauritmo both by Novartis, is a multi-targeted protein kinase inhibitor that has been investigated for the treatment of acute myeloid leukemia (AML), myelodysplastic syndrome (MDS) and advanced systemic mastocytosis. It is a semi-synthetic derivative of staurosporine, an alkaloid from the bacterium Streptomyces staurosporeus.

Dalotuzumab is an anti-IGF1 receptor (IGF1R) humanized monoclonal antibody designed for the potential treatment of various cancers. Common adverse effects include hyperglycemia, nausea, vomiting, and fatigue. Dalotuzumab was developed by Merck and Co., Inc.

<span class="mw-page-title-main">Ibrutinib</span> Medication used in cancer treatment

Ibrutinib, sold under the brand name Imbruvica among others, is a small molecule drug that inhibits B-cell proliferation and survival by irreversibly binding the protein Bruton's tyrosine kinase (BTK). Blocking BTK inhibits the B-cell receptor pathway, which is often aberrantly active in B cell cancers. Ibrutinib is therefore used to treat such cancers, including mantle cell lymphoma, chronic lymphocytic leukemia, and Waldenström's macroglobulinemia. Ibrutinib also binds to C-terminal Src Kinases. These are off-target receptors for the BTK inhibitor. Ibrutinib binds to these receptors and inhibits the kinase from promoting cell differentiation and growth. This leads to many different side effects like left atrial enlargement and atrial fibrillation during the treatment of Chronic Lymphocytic Leukemia.

<span class="mw-page-title-main">Sonidegib</span> Chemical compound

Sonidegib (INN), sold under the brand name Odomzo, is a medication used to treat cancer.

Hedgehog pathway inhibitors, also sometimes called hedgehog inhibitors, are small molecules that inhibit the activity of a component of the Hedgehog signaling pathway. Due to the role of aberrant Hedgehog signaling in tumor progression and cancer stem cell maintenance across cancer types, inhibition of the Hedgehog signaling pathway can be a useful strategy for restricting tumor growth and for preventing the recurrence of the disease post-surgery, post-radiotherapy, or post-chemotherapy. Thus, Hedgehog pathway inhibitors are an important class of anti-cancer drugs. At least three Hedgehog pathway inhibitors have been approved by the Food and Drug Administration (FDA) for cancer treatment. These include vismodegib and sonidegib, both inhibitors of Smoothened (SMO), which are being used for the treatment of basal cell carcinoma. Arsenic trioxide, an inhibitor of GLI transcription factors, is being used for the treatment of acute promyelocytic leukemia. In addition, multiple other Hedgehog pathway inhibitors are in different phases of clinical trials.

Brexucabtagene autoleucel, sold under the brand name Tecartus, is a cell-based gene therapy medication for the treatment of mantle cell lymphoma (MCL) and acute lymphoblastic leukemia (ALL).

<span class="mw-page-title-main">Motixafortide</span> Medication

Motixafortide, sold under the brand name Aphexda, is a medication used for the treatment of multiple myeloma. Motixafortide is a hematopoietic stem cell mobilizer and a CXCR4 antagonist. It is given by subcutaneous injection.

<span class="mw-page-title-main">Mavorixafor</span> Chemical compound

Mavorixafor, sold under the brand name Xolremdi, is a medication used for the treatment of WHIM syndrome. It is a CXC chemokine receptor 4 antagonist. It is taken by mouth. It was developed by X4 Pharmaceuticals.

References

  1. Knight, James C (2012). "Nuclear (PET/SPECT) and optical imaging probes targeting the CXCR4 chemokine receptor". MedChemComm. 3 (9): 1039. doi:10.1039/c2md20117h.
  2. Burke, Benjamin P. (2013). "Macrocyclic coordination chemistry". Annual Reports on the Progress of Chemistry, Section A. 109: 232. doi:10.1039/c3ic90032k.
  3. BL-8040 clinical trials
  4. BioLineRx (BLRX) Submits Regulatory Filings Needed to Commence BL-8040 Combo Phase 2a in Pancreatic Cancer. June 2016
  5. BL-8040, a Peptidic CXCR4 Antagonist, Induces Leukemia Cell Death and Specific Leukemia Cell Mobilization in Relapsed/Refractory Acute Myeloid Leukemia Patients in an Ongoing Phase IIa Clinical Trial. 2014
  6. Gaur, Pankaj (2018). "CXCR4 antagonist (BL-8040) to enhance antitumor effects by increasing tumor infiltration of antigen-specific effector T-cells". Journal of Clinical Oncology . 36 (5_suppl): 73. doi:10.1200/JCO.2018.36.5_suppl.73.
  7. "FDA approves first drug for WHIM syndrome, a rare disorder". U.S. Food and Drug Administration (FDA). 29 April 2024. Retrieved 29 April 2024.PD-icon.svg This article incorporates text from this source, which is in the public domain .