CapZ

Last updated

CapZ, also known as CAPZ, CAZ1 and CAPPA1, is a capping protein that caps the barbed end of actin filaments in muscle cells. [1]

Contents

Structure

CapZ is a heterodimeric molecule, made up of an α and β subunit. [2] The α and β subunits are similar in structure. Each subunit is divided into three domains and a shared C-terminal extension. [3] Helix 1-3 is an N-terminal that is composed of three antiparallel helices that are arranged in an up, down, up pattern. Helix 4 is a C-terminal made up of an antiparallel β sheet which is composed of five β strands. On one side of the C-terminal, there is a shorter N-terminal helix and a long C-terminal helix. This long C-terminal helix makes up helix 5. The final helix, helix 6 differs in the α and β subunits. The β subunit is longer than the α subunit.

Function

This image shows the structures of Cap32/34 superposed onto CapZ (in green) over the Ca positions of the entire CP molecules. Orthogonal views of cytoplasmic capping protein superposed onto its homolog CapZ.jpg
This image shows the structures of Cap32/34 superposed onto CapZ (in green) over the Cα positions of the entire CP molecules.

Actin stabilisation

The main function of CapZ is to cap the barbed (plus) end of actin filaments in muscle cells. It is located in the Z band of the muscle sarcomere. This protein helps to stabilize the actin filaments protecting it from assembly and disassembly. The activity regulation of this protein can be done by other regulatory proteins that bind to the actin filaments blocking the CapZ, hence allowing assembly. [5]

Cell signalling

CapZ is known to play a role in cell signaling, as it regulates PKC activity in cardiac cells. [6]

Cell movement

CapZ plays a role in cell movement (cell crawling) by controlling the lengths of the microfilaments. When CapZ is inhibited by regulating factors, microfilament polymerization or depolymerization occurs allowing lamellipodia and filopodia to grow out or retract. This polymerization and depolymerization gives the cell the appearance of crawling. When CapZ binds, it halts both of these processes. [7]

Regulation

Experimentation on chicken muscles have indicated that there are certain proteins that inhibit CapZ from binding. This includes PIP2 and other phospholipids. These molecules bind to CapZ itself to prevent it from binding to actin. However, introduction of certain detergents (in this case Triton X 100) prevent the binding of these molecules to CapZ; in turn allowing it to bind to the microfilament. [8] [9] Competition for actin binding sites can also regulate CapZ binding, as seen with filament elongation factors. These factors include ENA/VASP (enabled/vasodilator-stimulated phosphoprotein). [10] CapZ is not regulated by calcium or calmodulin, as seen with other capping proteins, such as Gelsolin. [11]

Clinical significance

Cardiac health

A modest reduction in cardiac CapZ protein protects hearts against acute ischemia-reperfusion injury. [12]

Genes

Related Research Articles

<span class="mw-page-title-main">Integrin</span> Instance of a defined set in Homo sapiens with Reactome ID (R-HSA-374573)

Integrins are transmembrane receptors that help cell-cell and cell-extracellular matrix (ECM) adhesion. Upon ligand binding, integrins activate signal transduction pathways that mediate cellular signals such as regulation of the cell cycle, organization of the intracellular cytoskeleton, and movement of new receptors to the cell membrane. The presence of integrins allows rapid and flexible responses to events at the cell surface.

<span class="mw-page-title-main">Microfilament</span> Filament in the cytoplasm of eukaryotic cells

Microfilaments, also called actin filaments, are protein filaments in the cytoplasm of eukaryotic cells that form part of the cytoskeleton. They are primarily composed of polymers of actin, but are modified by and interact with numerous other proteins in the cell. Microfilaments are usually about 7 nm in diameter and made up of two strands of actin. Microfilament functions include cytokinesis, amoeboid movement, cell motility, changes in cell shape, endocytosis and exocytosis, cell contractility, and mechanical stability. Microfilaments are flexible and relatively strong, resisting buckling by multi-piconewton compressive forces and filament fracture by nanonewton tensile forces. In inducing cell motility, one end of the actin filament elongates while the other end contracts, presumably by myosin II molecular motors. Additionally, they function as part of actomyosin-driven contractile molecular motors, wherein the thin filaments serve as tensile platforms for myosin's ATP-dependent pulling action in muscle contraction and pseudopod advancement. Microfilaments have a tough, flexible framework which helps the cell in movement.

<span class="mw-page-title-main">Actin</span> Family of proteins

Actin is a family of globular multi-functional proteins that form microfilaments in the cytoskeleton, and the thin filaments in muscle fibrils. It is found in essentially all eukaryotic cells, where it may be present at a concentration of over 100 μM; its mass is roughly 42 kDa, with a diameter of 4 to 7 nm.

<span class="mw-page-title-main">Myosin</span> Superfamily of motor proteins

Myosins are a superfamily of motor proteins best known for their roles in muscle contraction and in a wide range of other motility processes in eukaryotes. They are ATP-dependent and responsible for actin-based motility.

<span class="mw-page-title-main">Tropomyosin</span> Protein

Tropomyosin is a two-stranded alpha-helical, coiled coil protein found in many animal and fungal cells. In animals, it is an important component of the muscular system which works in conjunction with troponin to regulate muscle contraction. It is present in smooth and striated muscle tissues, which can be found in various organs and body systems, including the heart, blood vessels, respiratory system, and digestive system. In fungi, tropomyosin is found in cell walls and helps maintain the structural integrity of cells.

Actin-binding proteins are proteins that bind to actin. This may mean ability to bind actin monomers, or polymers, or both.

<span class="mw-page-title-main">ADF/Cofilin family</span> Family of actin-binding proteins

ADF/cofilin is a family of actin-binding proteins associated with the rapid depolymerization of actin microfilaments that give actin its characteristic dynamic instability. This dynamic instability is central to actin's role in muscle contraction, cell motility and transcription regulation.

<span class="mw-page-title-main">Gelsolin</span> Mammalian protein found in Homo sapiens

Gelsolin is an actin-binding protein that is a key regulator of actin filament assembly and disassembly. Gelsolin is one of the most potent members of the actin-severing gelsolin/villin superfamily, as it severs with nearly 100% efficiency.

<span class="mw-page-title-main">Protein filament</span> Long chain of protein monomers

In biology, a protein filament is a long chain of protein monomers, such as those found in hair, muscle, or in flagella. Protein filaments form together to make the cytoskeleton of the cell. They are often bundled together to provide support, strength, and rigidity to the cell. When the filaments are packed up together, they are able to form three different cellular parts. The three major classes of protein filaments that make up the cytoskeleton include: actin filaments, microtubules and intermediate filaments.

<span class="mw-page-title-main">Villin-1</span> Actin-binding protein

Villin-1 is a 92.5 kDa tissue-specific actin-binding protein associated with the actin core bundle of the brush border. Villin-1 is encoded by the VIL1 gene. Villin-1 contains multiple gelsolin-like domains capped by a small "headpiece" at the C-terminus consisting of a fast and independently folding three-helix bundle that is stabilized by hydrophobic interactions. The headpiece domain is a commonly studied protein in molecular dynamics due to its small size and fast folding kinetics and short primary sequence.

<span class="mw-page-title-main">Tropomodulin</span>

Tropomodulin (TMOD) is a protein which binds and caps the minus end of actin, regulating the length of actin filaments in muscle and non-muscle cells.

<span class="mw-page-title-main">Destrin</span> Protein found in humans

Destrin or DSTN is a protein which in humans is encoded by the DSTN gene. Destrin is a component protein in microfilaments.

Actinin is a microfilament protein. The functional protein is an anti-parallel dimer, which cross-links the thin filaments in adjacent sarcomeres, and therefore coordinates contractions between sarcomeres in the horizontal axis. Alpha-actinin is a part of the spectrin superfamily. This superfamily is made of spectrin, dystrophin, and their homologous and isoforms. In non-muscle cells, it is found by the actin filaments and at the adhesion sites.The lattice like arrangement provides stability to the muscle contractile apparatus. Specifically, it helps bind actin filaments to the cell membrane. There is a binding site at each end of the rod and with bundles of actin filaments.

<span class="mw-page-title-main">Alpha-actinin-4</span> Protein-coding gene in the species Homo sapiens

Alpha-actinin-4 is a protein that in humans is encoded by the ACTN4 gene.

<span class="mw-page-title-main">Capping protein (actin filament) muscle Z-line, alpha 1</span> Protein-coding gene in the species Homo sapiens

F-actin-capping protein subunit alpha-1 is a protein that in humans is encoded by the CAPZA1 gene.

<span class="mw-page-title-main">CAPZA2</span> Protein-coding gene in the species Homo sapiens

F-actin-capping protein subunit alpha-2 also known as CapZ-alpha2 is a protein that in humans is encoded by the CAPZA2 gene.

<span class="mw-page-title-main">CAPZB</span> Protein-coding gene in the species Homo sapiens

F-actin-capping protein subunit beta, also known as CapZβ is a protein that in humans is encoded by the CAPZB gene. CapZβ functions to cap actin filaments at barbed ends in muscle and other tissues.

Actin remodeling is the biochemical process that allows for the dynamic alterations of cellular organization. The remodeling of actin filaments occurs in a cyclic pattern on cell surfaces and exists as a fundamental aspect to cellular life. During the remodeling process, actin monomers polymerize in response to signaling cascades that stem from environmental cues. The cell's signaling pathways cause actin to affect intracellular organization of the cytoskeleton and often consequently, the cell membrane. Again triggered by environmental conditions, actin filaments break back down into monomers and the cycle is completed. Actin-binding proteins (ABPs) aid in the transformation of actin filaments throughout the actin remodeling process. These proteins account for the diverse structure and changes in shape of Eukaryotic cells. Despite its complexity, actin remodeling may result in complete cytoskeletal reorganization in under a minute.

<span class="mw-page-title-main">Cyclase-associated protein family</span>

In molecular biology, the cyclase-associated protein family (CAP) is a family of highly conserved actin-binding proteins present in a wide range of organisms including yeast, flies, plants, and mammals. CAPs are multifunctional proteins that contain several structural domains. CAP is involved in species-specific signalling pathways. In Drosophila, CAP functions in Hedgehog-mediated eye development and in establishing oocyte polarity. In Dictyostelium discoideum, CAP is involved in microfilament reorganisation near the plasma membrane in a PIP2-regulated manner and is required to perpetuate the cAMP relay signal to organise fruitbody formation. In plants, CAP is involved in plant signalling pathways required for co-ordinated organ expansion. In yeast, CAP is involved in adenylate cyclase activation, as well as in vesicle trafficking and endocytosis. In both yeast and mammals, CAPs appear to be involved in recycling G-actin monomers from ADF/cofilins for subsequent rounds of filament assembly. In mammals, there are two different CAPs that share 64% amino acid identity.

<span class="mw-page-title-main">F-actin capping protein</span>

In molecular biology, the F-actin capping protein is a protein complex which binds in a calcium-independent manner to the fast-growing ends of actin filaments, thereby blocking the exchange of subunits at these ends. Unlike gelsolin and severin this protein does not sever actin filaments. The F-actin capping protein is a heterodimer composed of two unrelated subunits: alpha and beta. Neither of the subunits shows sequence similarity to other filament-capping proteins. The alpha subunit is a protein of about 268 to 286 amino acid residues and the beta subunit is approximately 280 amino acids, their sequences are well conserved in eukaryotic species.

References

  1. "Actin Filament Capping Protein (CapZ): The Story After Crystal Structure Elucidation" (PDF). Retrieved November 11, 2019.
  2. Yamashita, Atsuko; Maeda, Kayo; Maéda, Yuichiro (2003-04-01). "Crystal structure of CapZ: structural basis for actin filament barbed end capping". The EMBO Journal. 22 (7): 1529–1538. doi:10.1093/emboj/cdg167. ISSN   0261-4189. PMC   152911 . PMID   12660160.
  3. Yamashita, Atsuko; Maeda, Kayo; Maéda, Yuichiro (1 April 2003). "Crystal structure of CapZ: structural basis for actin filament barbed end capping". The EMBO Journal. 22 (7): 1529–1538. doi:10.1093/emboj/cdg167. PMC   152911 . PMID   12660160.
  4. Eckert, C.; Goretzki, A.; Faberova, M.; Kollmar, M. (2012). "Conservation and divergence between cytoplasmic and muscle-specific actin capping proteins: Insights from the crystal structure of cytoplasmic Cap32/34 from Dictyostelium discoideum". BMC Structural Biology. 12: 12. doi: 10.1186/1472-6807-12-12 . PMC   3472329 . PMID   22657106.
  5. Lodish, Harvey; Berk, Arnold; Kaiser, Chris; Krieger, Monty; Bretscher, Antony; Ploegh, Hidde; Amon, Angelika; Scott, Matthew (2012-05-02). Molecular Cell Biology (7th ed.). W. H. Freeman. p. 783. ISBN   9781429234139.
  6. Yang, Fenghua; Aiello, David L.; Pyle, W. Glen (2008-02-01). "Cardiac myofilament regulation by protein phosphatase type 1alpha and CapZ". Biochemistry and Cell Biology. 86 (1): 70–78. doi:10.1139/o07-150. ISSN   1208-6002. PMID   18364747.
  7. Hug, Christopher; Jay, Patrick Y.; Reddy, Indira; McNally, James G.; Bridgman, Paul C.; Elson, Elliot L.; Cooper, John A. (May 1995). "Capping protein levels influence actin assembly and cell motility in dictyostelium". Cell. 81 (4): 591–600. doi: 10.1016/0092-8674(95)90080-2 . PMID   7758113.
  8. "CapZ". www.bms.ed.ac.uk. Retrieved 2016-11-06.
  9. Heiss, Steven; Cooper, John (June 24, 1991). "Regulation of CapZ, an actin capping protein of chicken muscle, by anionic phospholipids". Biochemistry. 30 (36): 8753–8758. doi:10.1021/bi00100a006. PMID   1653607.
  10. Edwards, Marc; Zwolak, Adam; Schafer, Dorothy A.; Sept, David; Dominguez, Roberto; Cooper, John A. (2014-10-01). "Capping protein regulators fine-tune actin assembly dynamics". Nature Reviews Molecular Cell Biology. 15 (10): 677–689. doi:10.1038/nrm3869. ISSN   1471-0072. PMC   4271544 . PMID   25207437.
  11. Gremm, D.; Wegner, A. (2000-07-01). "Gelsolin as a calcium-regulated actin filament-capping protein". European Journal of Biochemistry. 267 (14): 4339–4345. doi:10.1046/j.1432-1327.2000.01463.x. ISSN   0014-2956. PMID   10880956.
  12. Yang, Feng Hua; Pyle, W. Glen (March 2012). "Reduced cardiac CapZ protein protects hearts against acute ischemia–reperfusion injury and enhances preconditioning". Journal of Molecular and Cellular Cardiology. 52 (3): 761–772. doi:10.1016/j.yjmcc.2011.11.013. PMID   22155006.