Capacitive displacement sensor

Last updated
Industrial capacitive sensor Pepperl+Fuchs capacitive sensor CJ8-18GM-E2-V1.jpg
Industrial capacitive sensor

Capacitive displacement sensors are "non-contact devices capable of high-resolution measurement of the position and/or change of position of any conductive target". [1] They are also able to measure the thickness or density of non-conductive materials. [2] Capacitive displacement sensors are used in a wide variety of applications including semiconductor processing, assembly of precision equipment such as disk drives, precision thickness measurements, machine tool metrology and assembly line testing. These types of sensors can be found in machining and manufacturing facilities around the world.

Contents

Basic capacitive theory

Capacitance is an electrical property which is created by applying an electrical charge to two conductive objects with a gap between them. A simple demonstration is two parallel conductive plates of the same profile with a gap between them and a charge applied to them. In this situation, the Capacitance can be expressed by the equation:

[3]

Where C is the capacitance, ε0 is the permittivity of free space constant, K is the dielectric constant of the material in the gap, A is the area of the plates, and d is the distance between the plates.

There are two general types of capacitive displacement sensing systems. One type is used to measure thicknesses of conductive materials. The other type measures thicknesses of non conductive materials or the level of a fluid.

A capacitive sensing system for conductive materials uses a model similar to the one described above, but in place of one of the conductive plates, is the sensor, and in place of the other, is the conductive target to be measured. Since the area of the probe and target remain constant, and the dielectric of the material in the gap (usually air) also remains constant, "any change in capacitance is a result of a change in the distance between the probe and the target." [4] Therefore, the equation above can be simplified to:

Where α indicates a proportional relationship. Due to this proportional relationship, a capacitive sensing system is able to measure changes in capacitance and translate these changes in distance measurements.

The operation of the sensor for measuring thickness of non-conductive materials can be thought of as two capacitors in series, with each having a different dielectric (and dielectric constant). The sum of the thicknesses of the two dielectric materials remains constant but the thickness of each can vary. The thickness of the material to be measured displaces the other dielectric. The gap is often an air gap, (dielectric constant = 1) and the material has a higher dielectric. As the material gets thicker, the capacitance increases and is sensed by the system.

A sensor for measuring fluid levels works as two capacitors in parallel with constant total area. Again the difference in the dielectric constant of the fluid and the dielectric constant of air results in detectable changes in the capacitance between the conductive probes or plates.

Applications

Precision positioning

One of the more common applications of capacitive sensors is for precision positioning. Capacitive displacement sensors can be used to measure the position of objects down to the nanometer level. This type of precise positioning is used in the semiconductor industry where silicon wafers need to be positioned for exposure. Capacitive sensors are also used to pre-focus the electron microscopes used in testing and examining the wafers.

Disc drive industry

In the disc drive industry, capacitive displacement sensors are used to measure the runout (a measure of how much the axis of rotation deviates from an ideal fixed line) of disc drive spindles. By knowing the exact runout of these spindles, disc drive manufacturers are able to determine the maximum amount of data that can be placed onto the drives. Capacitive sensors are also used to ensure that disc drive platters are orthogonal to the spindle before data is written to them.

Precision thickness measurements

Capacitive displacement sensors can be used to make very precise thickness measurements. Capacitive displacement sensors operate by measuring changes in position. If the position of a reference part of known thickness is measured, other parts can be subsequently measured and the differences in position can be used to determine the thickness of these parts. [5] In order for this to be effective using a single probe, the parts must be completely flat and measured on a perfectly flat surface. If the part to be measured has any curvature or deformity, or simply does not rest firmly against the flat surface, the distance between the part to be measured and the surface it is placed upon will be erroneously included in the thickness measurement. This error can be eliminated by using two capacitive sensors to measure a single part. Capacitive sensors are placed on either side of the part to be measured. By measuring the parts from both sides, curvature and deformities are taken into account in the measurement and their effects are not included in the thickness readings.

The thickness of plastic materials can be measured with the material placed between two electrodes a set distance apart. These form a type of capacitor. The plastic when placed between the electrodes acts as a dielectric and displaces air (which has dielectric constant of 1, different from the plastic). Consequently, the capacitance between the electrodes changes. The capacitance changes can then be measured and correlated with the material's thickness. [6]

Capacitive sensors circuits can be constructed that are able to detect changes in capacitance on the order of a 10−5 picofarads (10 attofarads).

Non-conductive targets

While capacitive displacement sensors are most often used to sense changes in position of conductive targets, they can also be used to sense the thickness and/or density of non-conductive targets as well. [4] A non-conductive object placed in between the probe and conductive target will have a different dielectric constant than the air in the gap and will therefore change the Capacitance between probe and target. (See the first equation above) By analyzing this change in capacitance, the thickness and density of the non-conductor can be determined.

Machine tool metrology

Capacitive displacement sensors are often used in metrology applications. In many cases, sensors are used “to measure shape errors in the part being produced. But they also can measure the errors arising in the equipment used to manufacture the part, a practice known as machine tool metrology”. [7] In many cases, the sensors are used to analyze and optimize the rotation of spindles in various machine tools, examples include surface grinders, lathes, milling machines, and air bearing spindles. [8] By measuring errors in the machines themselves, rather than simply measuring errors in the final products, problems can be dealt with and fixed earlier in the manufacturing process.

Assembly line testing

Capacitive displacement sensors are often used in assembly line testing. Sometimes they are used to test assembled parts for uniformity, thickness or other design features. At other times, they are used to simply look for the presence or absence of a certain component, such as glue. [9] Using capacitive sensors to test assembly line parts can help to prevent quality concerns further along in the production process.

Comparison to eddy current displacement sensors

Capacitive displacement sensors share many similarities to eddy current (or inductive) displacement sensors; however capacitive sensors use an electric field as opposed to the magnetic field used by eddy current sensors [10] [11] This leads to a variety of differences between the two sensing technologies, with the most notable differences being that capacitive sensors are generally capable of higher resolution measurements, and eddy current sensors work in dirty environments while capacitive sensors do not. [10]

Other non-displacement capacitive sensing applications

See also

Related Research Articles

<span class="mw-page-title-main">Pressure measurement</span> Analysis of force applied by a fluid on a surface

Pressure measurement is the measurement of an applied force by a fluid on a surface. Pressure is typically measured in units of force per unit of surface area. Many techniques have been developed for the measurement of pressure and vacuum. Instruments used to measure and display pressure mechanically are called pressure gauges,vacuum gauges or compound gauges. The widely used Bourdon gauge is a mechanical device, which both measures and indicates and is probably the best known type of gauge.

<span class="mw-page-title-main">Relative permittivity</span> Measure of the electric polarizability of a dielectric, compared with that of a vacuum

The relative permittivity is the permittivity of a material expressed as a ratio with the electric permittivity of a vacuum. A dielectric is an insulating material, and the dielectric constant of an insulator measures the ability of the insulator to store electric energy in an electrical field.

<span class="mw-page-title-main">Capacitance</span> Ability of a body to store an electrical charge

Capacitance is the capability of a material object or device to store electric charge. It is measured by the charge in response to a difference in electric potential, expressed as the ratio of those quantities. Commonly recognized are two closely related notions of capacitance: self capacitance and mutual capacitance. An object that can be electrically charged exhibits self capacitance, for which the electric potential is measured between the object and ground. Mutual capacitance is measured between two components, and is particularly important in the operation of the capacitor, an elementary linear electronic component designed to add capacitance to an electric circuit.

<span class="mw-page-title-main">Hygrometer</span> Instrument for measuring humidity

A hygrometer is an instrument which measures the humidity of air or some other gas: that is, how much water vapor it contains. Humidity measurement instruments usually rely on measurements of some other quantities such as temperature, pressure, mass and mechanical or electrical changes in a substance as moisture is absorbed. By calibration and calculation, these measured quantities can lead to a measurement of humidity. Modern electronic devices use the temperature of condensation, or they sense changes in electrical capacitance or resistance to measure humidity differences. A crude hygrometer was invented by Leonardo da Vinci in 1480. Major leaps came forward during the 1600s; Francesco Folli invented a more practical version of the device, while Robert Hooke improved a number of meteorological devices including the hygrometer. A more modern version was created by Swiss polymath Johann Heinrich Lambert in 1755. Later, in the year 1783, Swiss physicist and Geologist Horace Bénédict de Saussure invented the first hygrometer using human hair to measure humidity.

<span class="mw-page-title-main">Touchscreen</span> Input and output device

A touchscreen or touch screen is the assembly of both an input and output ('display') device. The touch panel is normally layered on the top of an electronic visual display of an electronic device.

<span class="mw-page-title-main">Variable capacitor</span> Capacitor whose capacitance can be changed

A variable capacitor is a capacitor whose capacitance may be intentionally and repeatedly changed mechanically or electronically. Variable capacitors are often used in L/C circuits to set the resonance frequency, e.g. to tune a radio, or as a variable reactance, e.g. for impedance matching in antenna tuners.

<span class="mw-page-title-main">Coordinate-measuring machine</span> Device for measuring the geometry of objects

A coordinate measuring machine (CMM) is a device that measures the geometry of physical objects by sensing discrete points on the surface of the object with a probe. Various types of probes are used in CMMs, the most common being mechanical and laser sensors, though optical and white light sensor do exist. Depending on the machine, the probe position may be manually controlled by an operator or it may be computer controlled. CMMs typically specify a probe's position in terms of its displacement from a reference position in a three-dimensional Cartesian coordinate system. In addition to moving the probe along the X, Y, and Z axes, many machines also allow the probe angle to be controlled to allow measurement of surfaces that would otherwise be unreachable.

Level sensors detect the level of liquids and other fluids and fluidized solids, including slurries, granular materials, and powders that exhibit an upper free surface. Substances that flow become essentially horizontal in their containers because of gravity whereas most bulk solids pile at an angle of repose to a peak. The substance to be measured can be inside a container or can be in its natural form. The level measurement can be either continuous or point values. Continuous level sensors measure level within a specified range and determine the exact amount of substance in a certain place, while point-level sensors only indicate whether the substance is above or below the sensing point. Generally the latter detect levels that are excessively high or low.

<span class="mw-page-title-main">Capacitor</span> Passive two-terminal electronic component that stores electrical energy in an electric field

A capacitor is an electronic device that stores electrical energy in an electric field by accumulating electric charges on two closely spaced surfaces that are insulated from each other. It is a passive electronic component with two terminals.

<span class="mw-page-title-main">Test probe</span>

A test probe is a physical device used to connect electronic test equipment to a device under test (DUT). Test probes range from very simple, robust devices to complex probes that are sophisticated, expensive, and fragile. Specific types include test prods, oscilloscope probes and current probes. A test probe is often supplied as a test lead, which includes the probe, cable and terminating connector.

Frequency domain (FD) sensor is an instrument developed for measuring soil moisture content. The instrument has an oscillating circuit, the sensing part of the sensor is embedded in the soil, and the operating frequency will depend on the value of soil's dielectric constant.

Tire uniformity refers to the dynamic mechanical properties of pneumatic tires as strictly defined by a set of measurement standards and test conditions accepted by global tire and car makers.

<span class="mw-page-title-main">Ultrasonic transducer</span> Acoustic sensor

Ultrasonic transducers and ultrasonic sensors are devices that generate or sense ultrasound energy. They can be divided into three broad categories: transmitters, receivers and transceivers. Transmitters convert electrical signals into ultrasound, receivers convert ultrasound into electrical signals, and transceivers can both transmit and receive ultrasound.

An electromagnetic diaphragm is a form of capacitive sensor used on an electronic stethoscope. The diaphragm is coated with a conductive material. A conductive plate is positioned behind and parallel to the diaphragm, so that the two conductive elements form a capacitor. Capacitance is a function of plate area, dielectric properties of the space between the conductors, and the distance between the conductors. It is this latter parameter which is modulated by vibration such that the capacitance varies with the distance between the electromagnetic diaphragm and the plate, forming an acoustic sensor.

Capacitance sensors use capacitance to measure the dielectric permittivity of a surrounding medium. The configuration is like the neutron probe where an access tube made of PVC is installed in the soil; probes can also be modular (comb-like) and connected to a logger. The sensing head consists of an oscillator circuit, the frequency is determined by an annular electrode, fringe-effect capacitor, and the dielectric constant of the soil. Each capacitor sensor consists of two metal rings mounted on the circuit board at some distance from the top of the access tube. These rings are a pair of electrodes, which form the plates of the capacitor with the soil acting as the dielectric in between. The plates are connected to an oscillator, consisting of an inductor and a capacitor. The oscillating electrical field is generated between the two rings and extends into the soil medium through the wall of the access tube. The capacitor and the oscillator form a circuit, and changes in dielectric constant of surrounding media are detected by changes in the operating frequency. The capacitance sensors are designed to oscillate in excess of 100 MHz inside the access tube in free air. The output of the sensor is the frequency response of the soil’s capacitance due to its soil moisture level.

In electrical engineering, capacitive sensing is a technology, based on capacitive coupling, that can detect and measure anything that is conductive or has a dielectric constant different from air. Many types of sensors use capacitive sensing, including sensors to detect and measure proximity, pressure, position and displacement, force, humidity, fluid level, and acceleration. Human interface devices based on capacitive sensing, such as touchpads, can replace the computer mouse. Digital audio players, mobile phones, and tablet computers will sometimes use capacitive sensing touchscreens as input devices. Capacitive sensors can also replace mechanical buttons.

Sensors for arc welding are devices which – as a part of a fully mechanised welding equipment – are capable to acquire information about position and, if possible, about the geometry of the intended weld at the workpiece and to provide respective data in a suitable form for the control of the weld torch position and, if possible, for the arc welding process parameters.

A biotransducer is the recognition-transduction component of a biosensor system. It consists of two intimately coupled parts; a bio-recognition layer and a physicochemical transducer, which acting together converts a biochemical signal to an electronic or optical signal. The bio-recognition layer typically contains an enzyme or another binding protein such as antibody. However, oligonucleotide sequences, sub-cellular fragments such as organelles and receptor carrying fragments, single whole cells, small numbers of cells on synthetic scaffolds, or thin slices of animal or plant tissues, may also comprise the bio-recognition layer. It gives the biosensor selectivity and specificity. The physicochemical transducer is typically in intimate and controlled contact with the recognition layer. As a result of the presence and biochemical action of the analyte, a physico-chemical change is produced within the biorecognition layer that is measured by the physicochemical transducer producing a signal that is proportionate to the concentration of the analyte. The physicochemical transducer may be electrochemical, optical, electronic, gravimetric, pyroelectric or piezoelectric. Based on the type of biotransducer, biosensors can be classified as shown to the right.

Electrical capacitance volume tomography (ECVT) is a non-invasive 3D imaging technology applied primarily to multiphase flows. It was first introduced by W. Warsito, Q. Marashdeh, and L.-S. Fan as an extension of the conventional electrical capacitance tomography (ECT). In conventional ECT, sensor plates are distributed around a surface of interest. Measured capacitance between plate combinations is used to reconstruct 2D images (tomograms) of material distribution. In ECT, the fringing field from the edges of the plates is viewed as a source of distortion to the final reconstructed image and is thus mitigated by guard electrodes. ECVT exploits this fringing field and expands it through 3D sensor designs that deliberately establish an electric field variation in all three dimensions. The image reconstruction algorithms are similar in nature to ECT; nevertheless, the reconstruction problem in ECVT is more complicated. The sensitivity matrix of an ECVT sensor is more ill-conditioned and the overall reconstruction problem is more ill-posed compared to ECT. The ECVT approach to sensor design allows direct 3D imaging of the outrounded geometry. This is different than 3D-ECT that relies on stacking images from individual ECT sensors. 3D-ECT can also be accomplished by stacking frames from a sequence of time intervals of ECT measurements. Because the ECT sensor plates are required to have lengths on the order of the domain cross-section, 3D-ECT does not provide the required resolution in the axial dimension. ECVT solves this problem by going directly to the image reconstruction and avoiding the stacking approach. This is accomplished by using a sensor that is inherently three-dimensional.

A stretch sensor is a sensor which can be used to measure deformation and stretching forces such as tension or bending. They are usually made from a material that is itself soft and stretchable.

References

  1. Lion Precision Capacitive Sensor Overview, An overview of capacitive sensing technology from Lion Precision.
  2. Jon S. Wilson (2005). Sensor Technology Handbook. Newnes. p. 94. ISBN   0-7506-7729-5.
  3. Paul Allen Tipler (1982). Physics Second Edition. Worth Publishers. pp. 653–660. ISBN   0-87901-135-1.
  4. 1 2 Capacitive Sensor Operation and Optimization How Capacitive Sensors Work and How to Use Them Effectively Archived 2015-12-02 at the Wayback Machine , An in depth discussion of capacitive sensor theory from Lion Precision.
  5. Capacitive Thickness Measurements, A tutorial on capacitive thickness measurements.
  6. Film thickness gauge
  7. Lawrence Livermore National Laboratory: Engineering Precision into Laboratory Projects, Examples of advances made by LLNL in the field of precision measurement.
  8. Eric R. Marsh (2009). Precision Spindle Metrology. Destech Pubns Inc. ISBN   1-60595-003-3.
  9. Sensing Glue on Paper Archived 2010-07-09 at the Wayback Machine , A tutorial on using capacitive sensors for glue sensing.
  10. 1 2 Lion Precision Capacitive Eddy Current Comparison, A comparison between capacitive and eddy current sensing technology from Lion Precision.
  11. Users Manual for Siemens Capacitive Sensors p.54