Carlson symmetric form

Last updated

In mathematics, the Carlson symmetric forms of elliptic integrals are a small canonical set of elliptic integrals to which all others may be reduced. They are a modern alternative to the Legendre forms. The Legendre forms may be expressed in terms of the Carlson forms and vice versa.

Contents

The Carlson elliptic integrals are: [1]

Since and are special cases of and , all elliptic integrals can ultimately be evaluated in terms of just , , and .

The term symmetric refers to the fact that in contrast to the Legendre forms, these functions are unchanged by the exchange of certain subsets of their arguments. The value of is the same for any permutation of its arguments, and the value of is the same for any permutation of its first three arguments.

The Carlson elliptic integrals are named after Bille C. Carlson (1924-2013).

Relation to the Legendre forms

Incomplete elliptic integrals

Incomplete elliptic integrals can be calculated easily using Carlson symmetric forms:

(Note: the above are only valid for and )

Complete elliptic integrals

Complete elliptic integrals can be calculated by substituting φ = 12π:

Special cases

When any two, or all three of the arguments of are the same, then a substitution of renders the integrand rational. The integral can then be expressed in terms of elementary transcendental functions.

Similarly, when at least two of the first three arguments of are the same,

Properties

Homogeneity

By substituting in the integral definitions for any constant , it is found that

Duplication theorem

where .

[2]

where and

Series Expansion

In obtaining a Taylor series expansion for or it proves convenient to expand about the mean value of the several arguments. So for , letting the mean value of the arguments be , and using homogeneity, define , and by

that is etc. The differences , and are defined with this sign (such that they are subtracted), in order to be in agreement with Carlson's papers. Since is symmetric under permutation of , and , it is also symmetric in the quantities , and . It follows that both the integrand of and its integral can be expressed as functions of the elementary symmetric polynomials in , and which are

Expressing the integrand in terms of these polynomials, performing a multidimensional Taylor expansion and integrating term-by-term...

The advantage of expanding about the mean value of the arguments is now apparent; it reduces identically to zero, and so eliminates all terms involving - which otherwise would be the most numerous.

An ascending series for may be found in a similar way. There is a slight difficulty because is not fully symmetric; its dependence on its fourth argument, , is different from its dependence on , and . This is overcome by treating as a fully symmetric function of five arguments, two of which happen to have the same value . The mean value of the arguments is therefore taken to be

and the differences , and defined by

The elementary symmetric polynomials in , , , and (again) are in full

However, it is possible to simplify the formulae for , and using the fact that . Expressing the integrand in terms of these polynomials, performing a multidimensional Taylor expansion and integrating term-by-term as before...

As with , by expanding about the mean value of the arguments, more than half the terms (those involving ) are eliminated.

Negative arguments

In general, the arguments x, y, z of Carlson's integrals may not be real and negative, as this would place a branch point on the path of integration, making the integral ambiguous. However, if the second argument of , or the fourth argument, p, of is negative, then this results in a simple pole on the path of integration. In these cases the Cauchy principal value (finite part) of the integrals may be of interest; these are

and

where

which must be greater than zero for to be evaluated. This may be arranged by permuting x, y and z so that the value of y is between that of x and z.

Numerical evaluation

The duplication theorem can be used for a fast and robust evaluation of the Carlson symmetric form of elliptic integrals and therefore also for the evaluation of Legendre-form of elliptic integrals. Let us calculate : first, define , and . Then iterate the series

until the desired precision is reached: if , and are non-negative, all of the series will converge quickly to a given value, say, . Therefore,

Evaluating is much the same due to the relation

  1. F.W.J. Olver, D.W. Lozier, R.F. Boisvert, and C.W. Clark, editors, 2010, NIST Handbook of Mathematical Functions (Cambridge University Press), Section 19.16, "Symmetic Integrals" . Retrieved 2024-04-16..
  2. Carlson, Bille C. (1994). "Numerical computation of real or complex elliptic integrals". Numerical Algorithms. 10: 13–26. arXiv: math/9409227v1 . doi:10.1007/BF02198293.

Related Research Articles

<span class="mw-page-title-main">Heat equation</span> Partial differential equation describing the evolution of temperature in a region

In mathematics and physics, the heat equation is a certain partial differential equation. Solutions of the heat equation are sometimes known as caloric functions. The theory of the heat equation was first developed by Joseph Fourier in 1822 for the purpose of modeling how a quantity such as heat diffuses through a given region.

<span class="mw-page-title-main">Spherical harmonics</span> Special mathematical functions defined on the surface of a sphere

In mathematics and physical science, spherical harmonics are special functions defined on the surface of a sphere. They are often employed in solving partial differential equations in many scientific fields. The table of spherical harmonics contains a list of common spherical harmonics.

In vector calculus, Green's theorem relates a line integral around a simple closed curve C to a double integral over the plane region D bounded by C. It is the two-dimensional special case of Stokes' theorem.

Linear elasticity is a mathematical model of how solid objects deform and become internally stressed due to prescribed loading conditions. It is a simplification of the more general nonlinear theory of elasticity and a branch of continuum mechanics.

<span class="mw-page-title-main">Great-circle distance</span> Shortest distance between two points on the surface of a sphere

The great-circle distance, orthodromic distance, or spherical distance is the distance along a great circle.

In geodesy, conversion among different geographic coordinate systems is made necessary by the different geographic coordinate systems in use across the world and over time. Coordinate conversion is composed of a number of different types of conversion: format change of geographic coordinates, conversion of coordinate systems, or transformation to different geodetic datums. Geographic coordinate conversion has applications in cartography, surveying, navigation and geographic information systems.

In the theory of stochastic processes, the Karhunen–Loève theorem, also known as the Kosambi–Karhunen–Loève theorem states that a stochastic process can be represented as an infinite linear combination of orthogonal functions, analogous to a Fourier series representation of a function on a bounded interval. The transformation is also known as Hotelling transform and eigenvector transform, and is closely related to principal component analysis (PCA) technique widely used in image processing and in data analysis in many fields.

<span class="mw-page-title-main">Effective action</span> Quantum version of the classical action

In quantum field theory, the quantum effective action is a modified expression for the classical action taking into account quantum corrections while ensuring that the principle of least action applies, meaning that extremizing the effective action yields the equations of motion for the vacuum expectation values of the quantum fields. The effective action also acts as a generating functional for one-particle irreducible correlation functions. The potential component of the effective action is called the effective potential, with the expectation value of the true vacuum being the minimum of this potential rather than the classical potential, making it important for studying spontaneous symmetry breaking.

In differential geometry, the Laplace–Beltrami operator is a generalization of the Laplace operator to functions defined on submanifolds in Euclidean space and, even more generally, on Riemannian and pseudo-Riemannian manifolds. It is named after Pierre-Simon Laplace and Eugenio Beltrami.

In mathematics, a volume element provides a means for integrating a function with respect to volume in various coordinate systems such as spherical coordinates and cylindrical coordinates. Thus a volume element is an expression of the form

In theoretical physics, a source field is a background field coupled to the original field as

In special functions, a topic in mathematics, spin-weighted spherical harmonics are generalizations of the standard spherical harmonics and—like the usual spherical harmonics—are functions on the sphere. Unlike ordinary spherical harmonics, the spin-weighted harmonics are U(1) gauge fields rather than scalar fields: mathematically, they take values in a complex line bundle. The spin-weighted harmonics are organized by degree l, just like ordinary spherical harmonics, but have an additional spin weights that reflects the additional U(1) symmetry. A special basis of harmonics can be derived from the Laplace spherical harmonics Ylm, and are typically denoted by sYlm, where l and m are the usual parameters familiar from the standard Laplace spherical harmonics. In this special basis, the spin-weighted spherical harmonics appear as actual functions, because the choice of a polar axis fixes the U(1) gauge ambiguity. The spin-weighted spherical harmonics can be obtained from the standard spherical harmonics by application of spin raising and lowering operators. In particular, the spin-weighted spherical harmonics of spin weight s = 0 are simply the standard spherical harmonics:

In physics and mathematics, the solid harmonics are solutions of the Laplace equation in spherical polar coordinates, assumed to be (smooth) functions . There are two kinds: the regular solid harmonics, which are well-defined at the origin and the irregular solid harmonics, which are singular at the origin. Both sets of functions play an important role in potential theory, and are obtained by rescaling spherical harmonics appropriately:

In mathematics, the spectral theory of ordinary differential equations is the part of spectral theory concerned with the determination of the spectrum and eigenfunction expansion associated with a linear ordinary differential equation. In his dissertation, Hermann Weyl generalized the classical Sturm–Liouville theory on a finite closed interval to second order differential operators with singularities at the endpoints of the interval, possibly semi-infinite or infinite. Unlike the classical case, the spectrum may no longer consist of just a countable set of eigenvalues, but may also contain a continuous part. In this case the eigenfunction expansion involves an integral over the continuous part with respect to a spectral measure, given by the Titchmarsh–Kodaira formula. The theory was put in its final simplified form for singular differential equations of even degree by Kodaira and others, using von Neumann's spectral theorem. It has had important applications in quantum mechanics, operator theory and harmonic analysis on semisimple Lie groups.

In mathematics, the Plancherel theorem for spherical functions is an important result in the representation theory of semisimple Lie groups, due in its final form to Harish-Chandra. It is a natural generalisation in non-commutative harmonic analysis of the Plancherel formula and Fourier inversion formula in the representation theory of the group of real numbers in classical harmonic analysis and has a similarly close interconnection with the theory of differential equations. It is the special case for zonal spherical functions of the general Plancherel theorem for semisimple Lie groups, also proved by Harish-Chandra. The Plancherel theorem gives the eigenfunction expansion of radial functions for the Laplacian operator on the associated symmetric space X; it also gives the direct integral decomposition into irreducible representations of the regular representation on L2(X). In the case of hyperbolic space, these expansions were known from prior results of Mehler, Weyl and Fock.

Common integrals in quantum field theory are all variations and generalizations of Gaussian integrals to the complex plane and to multiple dimensions. Other integrals can be approximated by versions of the Gaussian integral. Fourier integrals are also considered.

<span class="mw-page-title-main">Geographical distance</span> Distance measured along the surface of the Earth

Geographical distance or geodetic distance is the distance measured along the surface of the Earth, or the shortest arch length.

In mathematics, the method of steepest descent or saddle-point method is an extension of Laplace's method for approximating an integral, where one deforms a contour integral in the complex plane to pass near a stationary point, in roughly the direction of steepest descent or stationary phase. The saddle-point approximation is used with integrals in the complex plane, whereas Laplace’s method is used with real integrals.

In mathematics, infinite compositions of analytic functions (ICAF) offer alternative formulations of analytic continued fractions, series, products and other infinite expansions, and the theory evolving from such compositions may shed light on the convergence/divergence of these expansions. Some functions can actually be expanded directly as infinite compositions. In addition, it is possible to use ICAF to evaluate solutions of fixed point equations involving infinite expansions. Complex dynamics offers another venue for iteration of systems of functions rather than a single function. For infinite compositions of a single function see Iterated function. For compositions of a finite number of functions, useful in fractal theory, see Iterated function system.

<span class="mw-page-title-main">Two-ray ground-reflection model</span>

The two-rays ground-reflection model is a multipath radio propagation model which predicts the path losses between a transmitting antenna and a receiving antenna when they are in line of sight (LOS). Generally, the two antenna each have different height. The received signal having two components, the LOS component and the reflection component formed predominantly by a single ground reflected wave.