Cascade refrigeration

Last updated
A two-cycle cascade refrigeration process schematic diagram Cascade refrigeration (two-cycle) process schematic diagram.png
A two-cycle cascade refrigeration process schematic diagram

A cascade refrigeration cycle is a multi-stage thermodynamic cycle. An example two-stage process is shown at right. (Bottom on mobile) The cascade cycle is often employed for devices such as ULT freezers. [1]

In a cascade refrigeration system, two or more vapor-compression cycles with different refrigerants are used. The evaporation-condensation temperatures of each cycle are sequentially lower with some overlap to cover the total temperature drop desired, with refrigerants selected to work efficiently in the temperature range they cover. The low temperature system removes heat from the space to be cooled using an evaporator, and transfers it to a heat exchanger that is cooled by the evaporation of the refrigerant of the high temperature system. Alternatively, a liquid to liquid or similar heat exchanger may be used instead. The high temperature system transfers heat to a conventional condenser that carries the entire heat output of the system and may be passively, fan, or water-cooled.

An auto-cascade process with two different refrigerants. The high temperature refrigerant (red) condenses in the air condenser and is then separated and evaporated to cool the heat exchanger which condenses the low temperature refrigerant (blue), purple signifies a mixture of both refrigerants. Autocascade refrigeration system.svg
An auto-cascade process with two different refrigerants. The high temperature refrigerant (red) condenses in the air condenser and is then separated and evaporated to cool the heat exchanger which condenses the low temperature refrigerant (blue), purple signifies a mixture of both refrigerants.

Cascade cycles may be separated by either being sealed in separated loops, or in what is referred to as an "auto-cascade" where the gases are compressed as a mixture but separated as one refrigerant condenses into a liquid while the other continues as a gas through the rest of the cycle. [2] [3] [4] [5] Although an auto-cascade introduces several constraints on the design and operating conditions of the system that may reduce the efficiency it is often used in small systems due to only requiring a single compressor, or in cryogenic systems as it reduces the need for high efficiency heat exchangers to prevent the compressors leaking heat into the cryogenic cycles. Both types can be used in the same system, generally with the separate cycles being the first stage(s) and the auto-cascade being the last stage.

Peltier coolers may also be cascaded into a multi-stage system to achieve lower temperatures. Here the hot side of the first Peltier cooler is cooled by the cold side of the second Peltier cooler, which is larger in size, whose hot side is in turn cooled by the cold side of an even larger Peltier cooler, and so on. [6] [7] [8] Efficiency drops very rapidly as more stages are added but for very small heat loads down to near-cryogenic temperatures this can often be an effective solution due to being compact and low cost, such as in mid-range thermographic cameras. A two stage Peltier cooler can achieve around -30°C, -75°C with three stages, -85°C with four stages, -100°C with six stages, and -123°C with seven stages. Refrigeration power and efficiency are low but Peltier coolers can be small, for small cooling loads resulting in overall low power consumption for a Peltier cooler with three stages. [9] [10] [11] For a Peltier cooler with seven stages, power consumption can be 65 W with a cooling capacity of 80 mW. [12]

Related Research Articles

<span class="mw-page-title-main">Refrigeration</span> Process of moving heat from one location to another in controlled conditions

Refrigeration is any of various types of cooling of a space, substance, or system to lower and/or maintain its temperature below the ambient one. Refrigeration is an artificial, or human-made, cooling method.

<span class="mw-page-title-main">Thermoelectric cooling</span> Electrically powered heat-transfer

Thermoelectric cooling uses the Peltier effect to create a heat flux at the junction of two different types of materials. A Peltier cooler, heater, or thermoelectric heat pump is a solid-state active heat pump which transfers heat from one side of the device to the other, with consumption of electrical energy, depending on the direction of the current. Such an instrument is also called a Peltier device, Peltier heat pump, solid state refrigerator, or thermoelectric cooler (TEC) and occasionally a thermoelectric battery. It can be used either for heating or for cooling, although in practice the main application is cooling. It can also be used as a temperature controller that either heats or cools.

<span class="mw-page-title-main">Evaporative cooler</span> Device that cools air through the evaporation of water

An evaporative cooler is a device that cools air through the evaporation of water. Evaporative cooling differs from other air conditioning systems, which use vapor-compression or absorption refrigeration cycles. Evaporative cooling exploits the fact that water will absorb a relatively large amount of heat in order to evaporate. The temperature of dry air can be dropped significantly through the phase transition of liquid water to water vapor (evaporation). This can cool air using much less energy than refrigeration. In extremely dry climates, evaporative cooling of air has the added benefit of conditioning the air with more moisture for the comfort of building occupants.

<span class="mw-page-title-main">Chiller</span> Machine that removes heat from a liquid coolant via vapor compression

A chiller is a machine that removes heat from a liquid coolant via a vapor-compression, adsorption refrigeration, or absorption refrigeration cycles. This liquid can then be circulated through a heat exchanger to cool equipment, or another process stream. As a necessary by-product, refrigeration creates waste heat that must be exhausted to ambience, or for greater efficiency, recovered for heating purposes. Vapor compression chillers may use any of a number of different types of compressors. Most common today are the hermetic scroll, semi-hermetic screw, or centrifugal compressors. The condensing side of the chiller can be either air or water cooled. Even when liquid cooled, the chiller is often cooled by an induced or forced draft cooling tower. Absorption and adsorption chillers require a heat source to function.

<span class="mw-page-title-main">Cryostat</span>

A cryostat is a device used to maintain low cryogenic temperatures of samples or devices mounted within the cryostat. Low temperatures may be maintained within a cryostat by using various refrigeration methods, most commonly using cryogenic fluid bath such as liquid helium. Hence it is usually assembled into a vessel, similar in construction to a vacuum flask or Dewar. Cryostats have numerous applications within science, engineering, and medicine.

<span class="mw-page-title-main">Refrigerator</span> Appliance for cold food storage

A refrigerator, colloquially fridge, is a commercial and home appliance consisting of a thermally insulated compartment and a heat pump that transfers heat from its inside to its external environment so that its inside is cooled to a temperature below the room temperature. Refrigeration is an essential food storage technique around the world. The lower temperature lowers the reproduction rate of bacteria, so the refrigerator reduces the rate of spoilage. A refrigerator maintains a temperature a few degrees above the freezing point of water. The optimal temperature range for perishable food storage is 3 to 5 °C. A similar device that maintains a temperature below the freezing point of water is called a freezer. The refrigerator replaced the icebox, which had been a common household appliance for almost a century and a half. The United States Food and Drug Administration recommends that the refrigerator be kept at or below 4 °C (40 °F) and that the freezer be regulated at −18 °C (0 °F).

<span class="mw-page-title-main">Icemaker</span>

An icemaker, ice generator, or ice machine may refer to either a consumer device for making ice, found inside a home freezer; a stand-alone appliance for making ice, or an industrial machine for making ice on a large scale. The term "ice machine" usually refers to the stand-alone appliance.

<span class="mw-page-title-main">Icyball</span>

Icyball is a name given to two early refrigerators, one made by Australian Sir Edward Hallstrom in 1923, and the other design patented by David Forbes Keith of Toronto, and manufactured by American Powel Crosley Jr., who bought the rights to the device. Both devices are unusual in design in that they did not require the use of electricity for cooling. They can run for a day on a cup of kerosene, allowing rural users lacking electricity the benefits of refrigeration.

<span class="mw-page-title-main">Absorption refrigerator</span> Heat-source powered

An absorption refrigerator is a refrigerator that uses a heat source to provide the energy needed to drive the cooling process. The system uses two coolants, the first of which performs evaporative cooling and is then absorbed into the second coolant; heat is needed to reset the two coolants to their initial states. The principle can also be used to air-condition buildings using the waste heat from a gas turbine or water heater. Using waste heat from a gas turbine makes the turbine very efficient because it first produces electricity, then hot water, and finally, air-conditioning—trigeneration. Absorption refrigerators are commonly used in recreational vehicles (RVs), campers, and caravans because the heat required to power them can be provided by a propane fuel burner, by a low-voltage DC electric heater or by a mains-powered electric heater. Unlike more common vapor-compression refrigeration systems, an absorption refrigerator has no moving parts.

Economizers, or economisers (UK), are mechanical devices intended to reduce energy consumption, or to perform useful function such as preheating a fluid. The term economizer is used for other purposes as well. Boiler, power plant, heating, refrigeration, ventilating, and air conditioning (HVAC) uses are discussed in this article. In simple terms, an economizer is a heat exchanger.

<span class="mw-page-title-main">Vapor-compression refrigeration</span> Refrigeration process

Vapour-compression refrigeration or vapor-compression refrigeration system (VCRS), in which the refrigerant undergoes phase changes, is one of the many refrigeration cycles and is the most widely used method for air conditioning of buildings and automobiles. It is also used in domestic and commercial refrigerators, large-scale warehouses for chilled or frozen storage of foods and meats, refrigerated trucks and railroad cars, and a host of other commercial and industrial services. Oil refineries, petrochemical and chemical processing plants, and natural gas processing plants are among the many types of industrial plants that often utilize large vapor-compression refrigeration systems. Cascade refrigeration systems may also be implemented using two compressors.

<span class="mw-page-title-main">Thermal expansion valve</span> Component of air conditioning and refrigeration systems

A thermal expansion valve or thermostatic expansion valve is a component in vapor-compression refrigeration and air conditioning systems that controls the amount of refrigerant released into the evaporator and is intended to regulate the superheat of the refrigerant that flows out of the evaporator to a steady value. Although often described as a "thermostatic" valve, an expansion valve is not able to regulate the evaporator's temperature to a precise value. The evaporator's temperature will vary only with the evaporating pressure, which will have to be regulated through other means.

<span class="mw-page-title-main">Heat pump and refrigeration cycle</span> Mathematical models of heat pumps and refrigeration

Thermodynamic heat pump cycles or refrigeration cycles are the conceptual and mathematical models for heat pump, air conditioning and refrigeration systems. A heat pump is a mechanical system that allows for the transmission of heat from one location at a lower temperature to another location at a higher temperature. Thus a heat pump may be thought of as a "heater" if the objective is to warm the heat sink, or a "refrigerator" or “cooler” if the objective is to cool the heat source. In either case, the operating principles are similar. Heat is moved from a cold place to a warm place.

Natural refrigerants are considered substances that serve as refrigerants in refrigeration systems. They are alternatives to synthetic refrigerants such as chlorofluorocarbon (CFC), hydrochlorofluorocarbon (HCFC), and hydrofluorocarbon (HFC) based refrigerants. Unlike other refrigerants, natural refrigerants can be found in nature and are commercially available thanks to physical industrial processes like fractional distillation, chemical reactions such as Haber process and spin-off gases. The most prominent of these include various natural hydrocarbons, carbon dioxide, ammonia, and water. Natural refrigerants are preferred actually in new equipment to their synthetic counterparts for their presumption of higher degrees of sustainability. With the current technologies available, almost 75 percent of the refrigeration and air conditioning sector has the potential to be converted to natural refrigerants.

<span class="mw-page-title-main">Pulse tube refrigerator</span> Device using sound waves to reduce heat

The pulse tube refrigerator (PTR) or pulse tube cryocooler is a developing technology that emerged largely in the early 1980s with a series of other innovations in the broader field of thermoacoustics. In contrast with other cryocoolers, this cryocooler can be made without moving parts in the low temperature part of the device, making the cooler suitable for a wide variety of applications.

<span class="mw-page-title-main">Kleemenko cycle</span>

The Kleemenko cycle or one-flow cascade cycle is a single-stream mixed-refrigerant technique used to cool or liquefy gases. The term "Kleemenko cycle" is used in refrigeration if multi-component refrigerants (MCR) are used in a cycle.

The term subcooling refers to a liquid existing at a temperature below its normal boiling point. For example, water boils at 373 K; at room temperature (293 K) liquid water is termed "subcooled". A subcooled liquid is the convenient state in which, say, refrigerants may undergo the remaining stages of a refrigeration cycle. Normally, a refrigeration system has a subcooling stage, allowing technicians to be certain that the quality, in which the refrigerant reaches the next step on the cycle, is the desired one. Subcooling may take place in heat exchangers and outside them. Being both similar and inverse processes, subcooling and superheating are important to determine stability and well-functioning of a refrigeration system.

<span class="mw-page-title-main">Automotive air conditioning</span> System to cool the air in a vehicle

Automotive air conditioning systems use air conditioning to cool the air in a vehicle.

In refrigeration, flash-gas is refrigerant in gas form produced spontaneously when the condensed liquid is subjected to boiling. The presence of flash-gas in the liquid lines reduces the efficiency of the refrigeration cycle. It can also lead several expansion systems to work improperly, and increase superheating at the evaporator. This is normally perceived as an unwanted condition caused by dissociation between the volume of the system, and the pressures and temperatures that allow the refrigerant to be liquid. Flash-gas must not be confused with lack of condensation, but special gear such as receivers, internal heat exchangers, insulation, and refrigeration cycle optimizers may improve condensation and avoid gas in the liquid lines.

Electronics cooling encompasses thermal design, analysis and experimental characterization of electronic systems as a discrete discipline with the product creation process for an electronics product, or an electronics sub-system within a product. On-line sources of information are available and a number of books have been published on this topic.

References

  1. Berchowitz, David; Kwon, Yongrak (2012). "Environmental Profiles of Stirling-Cooled and Cascade-Cooled Ultra-Low Temperature Freezers". Sustainability. 4 (11): 2838–2851. doi: 10.3390/su4112838 .
  2. Kai Du, Shaoqian Zhang, Weirong Xu, Xiaofeng Niu, A study on the cycle characteristics of an auto-cascade refrigeration system, Experimental Thermal and Fluid Science, Volume 33, Issue 2, 2009, Pages 240-245, ISSN 0894-1777, https://doi.org/10.1016/j.expthermflusci.2008.08.006. (https://www.sciencedirect.com/science/article/pii/S0894177708001271)
  3. Venkatarathnam, Gadhiraju (December 10, 2008). "Cryogenic Mixed Refrigerant Processes". Springer Science & Business Media. p. 121 via Google Books.
  4. Ross, Ronald G. Jr (May 8, 2007). "Cryocoolers 11". Springer Science & Business Media via Google Books.
  5. Pandey, Chandan; Goyat, Vikas; Goel, Sunkulp (June 6, 2021). "Advances in Materials and Mechanical Engineering: Select Proceedings of ICFTMME 2020". Springer Nature via Google Books.
  6. Huebener, Rudolf P. (November 16, 2019). "Conductors, Semiconductors, Superconductors: An Introduction to Solid-State Physics". Springer Nature via Google Books.
  7. Rowe, D. M. (December 7, 2018). "CRC Handbook of Thermoelectrics". CRC Press via Google Books.
  8. Eibl, Oliver; Nielsch, Kornelius; Peranio, Nicola; Völklein, Friedemann (April 21, 2015). "Thermoelectric Bi2Te3 Nanomaterials". John Wiley & Sons via Google Books.
  9. Gaussorgues, G.; Chomet, S. (December 6, 2012). "Infrared Thermography". Springer Science & Business Media via Google Books.
  10. Nyquist, Richard A. (April 20, 2001). "Interpreting Infrared, Raman, and Nuclear Magnetic Resonance Spectra". Academic Press via Google Books.
  11. Rogalski, Antonio (November 15, 2010). "Infrared Detectors". CRC Press via Google Books.
  12. Maldaque, Xavier P. V. (April 28, 2023). "Infrared Methodology and Technology". CRC Press via Google Books.