Cellular multiprocessing

Last updated

Cellular multiprocessing is a multiprocessing computing architecture designed initially for Intel central processing units from Unisys, a worldwide information technology consulting company.

It consists of the partitioning of processors into separate computing environments running different operating systems. Providing up to 32 processors that are crossbar connected to 64GB of memory and 96 PCI cards, a CMP system provides mainframe-like architecture using Intel CPUs. CMP supports Windows NT and Windows 2000 Server, AIX, Novell NetWare and UnixWare and can be run as one large SMP system or multiple systems with variant operating systems.

There is a concept of creating CPU Partitions in CMPs, e.g. one can create a full partition of 32 processors, Or one can create two partitions of 16 processors each, these two partitions will be visible to the OS installed as two machines. Similarly for 32 processors it is possible to create 32 partitions at max each having a single CPU. Unisys' CMP is the only server architecture to take full advantage of Microsoft's Windows 2000 Datacenter Server operating system's support for 32 processors. [1]

In case of LINUX/UNIX OS the CMP technology is proven to be very best, whereas in case of Windows 2003 Servers installations, there are certain limits for partitions having number of CPUs, like for a windows 2003 installation the maximum CPU in a partition can only be 4, if more CPUs are assigned severe performance degrade are observed. Even on 8 CPU partition the performance is comparable to the performance of a 2 processors partition.

A CMP subpod contains four x86 or Itanium CPUs, which connect through a third-level memory cache to the crossbar. Each crossbar supports two subpods, two direct I/O bridges (DIBs) and can connect to four memory storage units (MSUs). [2]

Unisys is also providing CMP server technology to Compaq, Dell, Hewlett-Packard and ICL, under OEM agreements. [3]

See also

Related Research Articles

<span class="mw-page-title-main">Computer multitasking</span> Concurrent execution of multiple processes

In computing, multitasking is the concurrent execution of multiple tasks over a certain period of time. New tasks can interrupt already started ones before they finish, instead of waiting for them to end. As a result, a computer executes segments of multiple tasks in an interleaved manner, while the tasks share common processing resources such as central processing units (CPUs) and main memory. Multitasking automatically interrupts the running program, saving its state and loading the saved state of another program and transferring control to it. This "context switch" may be initiated at fixed time intervals, or the running program may be coded to signal to the supervisory software when it can be interrupted.

<span class="mw-page-title-main">Mainframe computer</span> Large computer

A mainframe computer, informally called a mainframe or big iron, is a computer used primarily by large organizations for critical applications like bulk data processing for tasks such as censuses, industry and consumer statistics, enterprise resource planning, and large-scale transaction processing. A mainframe computer is large but not as large as a supercomputer and has more processing power than some other classes of computers, such as minicomputers, servers, workstations, and personal computers. Most large-scale computer-system architectures were established in the 1960s, but they continue to evolve. Mainframe computers are often used as servers.

<span class="mw-page-title-main">Operating system</span> Software that manages computer hardware resources

An operating system (OS) is system software that manages computer hardware, software resources, and provides common services for computer programs.

<span class="mw-page-title-main">Non-uniform memory access</span> Computer memory design used in multiprocessing

Non-uniform memory access (NUMA) is a computer memory design used in multiprocessing, where the memory access time depends on the memory location relative to the processor. Under NUMA, a processor can access its own local memory faster than non-local memory. The benefits of NUMA are limited to particular workloads, notably on servers where the data is often associated strongly with certain tasks or users.

<span class="mw-page-title-main">Symmetric multiprocessing</span> The equal sharing of all resources by multiple identical processors

Symmetric multiprocessing or shared-memory multiprocessing (SMP) involves a multiprocessor computer hardware and software architecture where two or more identical processors are connected to a single, shared main memory, have full access to all input and output devices, and are controlled by a single operating system instance that treats all processors equally, reserving none for special purposes. Most multiprocessor systems today use an SMP architecture. In the case of multi-core processors, the SMP architecture applies to the cores, treating them as separate processors.

Multiprocessing is the use of two or more central processing units (CPUs) within a single computer system. The term also refers to the ability of a system to support more than one processor or the ability to allocate tasks between them. There are many variations on this basic theme, and the definition of multiprocessing can vary with context, mostly as a function of how CPUs are defined.

Originally, the word computing was synonymous with counting and calculating, and the science and technology of mathematical calculations. Today, "computing" means using computers and other computing machines. It includes their operation and usage, the electrical processes carried out within the computing hardware itself, and the theoretical concepts governing them.

In computer architecture, 64-bit integers, memory addresses, or other data units are those that are 64 bits wide. Also, 64-bit CPUs and ALUs are those that are based on processor registers, address buses, or data buses of that size. A computer that uses such a processor is a 64-bit computer.

Sequent Computer Systems was a computer company that designed and manufactured multiprocessing computer systems. They were among the pioneers in high-performance symmetric multiprocessing (SMP) open systems, innovating in both hardware and software.

<span class="mw-page-title-main">NetWare</span> Computer network operating system developed by Novell, Inc

NetWare is a discontinued computer network operating system developed by Novell, Inc. It initially used cooperative multitasking to run various services on a personal computer, using the IPX network protocol.

Aviion was a series of computers from Data General that were the company's main product from the late 1980s until the company's server products were discontinued in 2001. Earlier Aviion models used the Motorola 88000 CPU, but later models moved to an all-Intel solution when Motorola stopped work on the 88000 in the early 1990s. Some versions of these later Intel-based machines ran Windows NT, while higher-end machines ran the company's flavor of Unix, DG/UX.

<span class="mw-page-title-main">UNIX System V</span> Early commercial UNIX operating system

Unix System V is one of the first commercial versions of the Unix operating system. It was originally developed by AT&T and first released in 1983. Four major versions of System V were released, numbered 1, 2, 3, and 4. System V Release 4 (SVR4) was commercially the most successful version, being the result of an effort, marketed as Unix System Unification, which solicited the collaboration of the major Unix vendors. It was the source of several common commercial Unix features. System V is sometimes abbreviated to SysV.

A logical partition (LPAR) is a subset of a computer's hardware resources, virtualized as a separate computer. In effect, a physical machine can be partitioned into multiple logical partitions, each hosting a separate instance of an operating system.

<span class="mw-page-title-main">Multi-core processor</span> Microprocessor with more than one processing unit

A multi-core processor is a microprocessor on a single integrated circuit with two or more separate processing units, called cores, each of which reads and executes program instructions. The instructions are ordinary CPU instructions but the single processor can run instructions on separate cores at the same time, increasing overall speed for programs that support multithreading or other parallel computing techniques. Manufacturers typically integrate the cores onto a single integrated circuit die or onto multiple dies in a single chip package. The microprocessors currently used in almost all personal computers are multi-core.

<span class="mw-page-title-main">Input–output memory management unit</span>

In computing, an input–output memory management unit (IOMMU) is a memory management unit (MMU) connecting a direct-memory-access–capable (DMA-capable) I/O bus to the main memory. Like a traditional MMU, which translates CPU-visible virtual addresses to physical addresses, the IOMMU maps device-visible virtual addresses to physical addresses. Some units also provide memory protection from faulty or malicious devices.

The ES7000 is Unisys's x86/Windows, Linux and Solaris-based server product line. The "ES7000" brand has been used since 1999, although variants and models within the family support various processor and bus architectures. The server is marketed and positioned as a scale-up platform where scale-out becomes inefficient. Typically the ES7000 is utilized as a platform for homogeneous consolidation, large databases, Business Intelligence, Decision Support Systems, ERP, virtualization, as well as large Linux application hosting.

LynxSecure is a least privilege real-time separation kernel hypervisor from Lynx Software Technologies designed for safety and security critical applications found in military, avionic, industrial, and automotive markets.

OS 2200 is the operating system for the Unisys ClearPath Dorado family of mainframe systems. The operating system kernel of OS 2200 is a lineal descendant of Exec 8 for the UNIVAC 1108. Documentation and other information on current and past Unisys systems can be found on the Unisys public support website.

A multiprocessor system is defined as "a system with more than one processor", and, more precisely, "a number of central processing units linked together to enable parallel processing to take place".

References

  1. "Unisys to provide 16- and 32-processor servers based on Unisys Cellular MultiProcessing (CMP) architecture to Hitachi". Archived from the original on 2011-07-12. Retrieved 2011-02-17.
  2. "Home". computerlanguage.com.
  3. "Unisys to provide 16- and 32-processor servers based on Unisys Cellular MultiProcessing (CMP) architecture to Hitachi". Archived from the original on 2011-07-12. Retrieved 2011-02-17.