Change deafness

Last updated

Change deafness is a perceptual phenomenon that occurs when, under certain circumstances, a physical change in an auditory stimulus goes unnoticed by the listener. There is uncertainty regarding the mechanisms by which changes to auditory stimuli go undetected, though scientific research has been done to determine the levels of processing at which these consciously undetected auditory changes are actually encoded. An understanding of the mechanisms underlying change deafness could offer insight on issues such as the completeness of our representation of the auditory environment, the limitations of the auditory perceptual system, and the relationship between the auditory system and memory. [1] The phenomenon of change deafness is thought to be related to the interactions between high and low level processes that produce conscious experiences of auditory soundscapes. [1]

Contents

Determinants

Attention

Evidence that attention influences change deafness has been observed across a variety of auditory paradigms, including those consisting of semantic language and natural sounds. In both cases, inattention to the relevant segment of the auditory scene results in more occurrences of change-deafness, where attention may be a function of structural components of the auditory information, or cues built into the experimental design. [2] [3]

Semantic evidence

In one study, participants listened to short narratives in which a man and woman converse about an inanimate object that is semantically related to the man (e.g., "tourist" and "suitcase"). In the fifth sentence of the narrative, either the woman would continue her conversation with the man (coherent continuation), or she would suddenly start talking to the inanimate object instead (anomalous continuation); except for the critical words, these continuations were identical in coherent and anomalous continuations. In both cases the critical words of the continuation were de-accented, in order to minimize prosodic differences across both versions of the story. It was predicted that listeners would immediately notice the semantic change in the anomalous continuation condition, despite conditions that have been demonstrated to elicit semantic illusions, since it produces a strong discourse coherence break. This was tested using event-related potential analysis, with the expectation that the anomalous continuation would immediately elicit a large N400 effect relative to the coherent continuation, given that semantically anomalous, or even coherent but unexpected words, have been shown to elicit significantly larger N400 effects than semantically coherent or expected words about 150–250 ms after the onset of the critical word. Contrary to this prediction, results yielded the absence of an N400 effect and the presence of a differential effect that began to emerge at approximately 500–600 ms after critical word onset. The absence of an N400 effect is interpreted as a temporary change deafness effect in which the semantic change momentarily went undetected, because of the well-established sensitivity of the N400 to very subtle differences in the relatedness of a word to its semantic context. The experimenters speculate that the initial lack of change detection is a product of strong expectations combined with input that is superficially consistent with the context, in that the anomalous word is semantically associated with the correct word and not accented in any unusual way. The differential event-related potential shows that the participants processed the change, but it took significantly longer to detect than expected. [2]

Evidence from perception of natural sounds

Another study examined the effect of selective attention on the perception of changes to auditory scenes consisting of multiple naturalistic sounds, and found that auditory perception is limited by attention. In the task, listeners heard two versions of any auditory scene, with one object missing from the second version. Participants were either instructed to attend to a specific object, and report whether that object was missing in the second version of the scene, or to attend to all objects, and report whether any object was missing in the second scene; these are called the directed- and non-directed attention conditions respectively. Results showed that in the absence of an attentional cue, change-detection in auditory scenes consisting of more than about four objects is unreliable, where changes consist of either the disappearance of an object or a change in its location. It is important to note the ambiguity concerning the mechanism that produces the effect of attention on change-deafness, and this study suggests two possibilities. The first is that segregation of the distinct streams composing an auditory scene requires directed attention, meaning that the change-deafness effects observed in the study would reflect a difficulty in perceiving separate auditory scenes in the absence of attentional cues. A second alternative is that complex auditory scenes are initially perceived as consisting of separate streams, and thus change-deafness effects are the result of limits in encoding and storing multiple sets of auditory information for comparison with a subsequent scene. [3]

Experience and familiarity: evidence from musical change deafness

A change detection task consisting of musical melodies of different types, namely stylistic melodies (following the normal constraints of Classical music), non-stylistic melodies (lacking in tonal structure), and randomly generated melodies, revealed significant effects of several interacting parameters on change-deafness. Tonal, rhythmic and metrical structure can give emphasis to a sequence of notes, giving listeners a template on which to build a "musical gist", or a memory representation for schematically consistent tones. This experiment produced evidence supporting the prediction that a lack of musical structure makes schematic processing of the auditory information more difficult, producing more change deafness among listeners. When the melodies presented in these experiments were structurally unfamiliar, the listeners had greater difficulty encoding features of the music and were thus less able to detect changes in melody. In this task, the listeners' experience and familiarity with Western music determined their ability to encode features of the music; however non-scale tones, as well as tones not emphasized by meter and duration, were not consistently retained in short-term memory, and thus listeners were less able to detect changes to these elements of the music. [4]

Neural correlates

One study used fMRI data to distinguish neural correlates of physical changes in auditory input (independent of conscious change detection), from those of conscious perception of change (independent of an actual physical change). The study made use of a change deafness paradigm in which participants were exposed to complex auditory scenes consisting of six individual auditory streams differing in pitch, rhythm, and sound source location, and received a cue indicating which stream to attend to. Each participant listened to two consecutively presented auditory scenes after which they were prompted to indicate whether both scenes were identical or not. Functional MRI results revealed that physical change in stimulus was correlated with increased BOLD responses in the right auditory cortex, near the lateral portion of Heschl's gyrus, the first cortical structure to process incoming auditory information, but not in hierarchically higher brain regions. [5] Conscious change detection was correlated with increased coupled responses in the ACC and the right insula, consistent with additional evidence that the anterior insula functions to mediate dynamic interactions between other brain networks involved in attention to external stimuli, forming a salience network with the ACC that identifies salient stimulus events and initiates additional processing. [6] In absence of change detection, this salience network was not activated; however increased activity in other cortical areas suggests that undetected changes are still perceived on some level, but fail to trigger conscious change detection, thus producing the change deafness phenomenon. [5]

Additional studies of change deafness have generated evidence in support of the prediction that undetected changes are successfully encoded at the sensory level in the auditory cortex, but do not trigger later change-related cortical responses that would produce conscious perception of change. EEG analysis during a change-detection task using changes in pitch revealed that responses previously shown to be involved with sensory extraction of pitch information increased during both detected and undetected pitch changes in auditory input, however only in cases where the pitch change was detected were later processing stages triggered, originating from hierarchically higher non-sensory brain regions. These findings suggest that change deafness does not arise from a deficit in initial sensory encoding of changed stimulus features in auditory cortex but occurs at a higher level of stimulus processing in auditory cortex, resulting in a failure to trigger auditory change detection mechanisms. [7]

See also

Related Research Articles

<span class="mw-page-title-main">Perception</span> Interpretation of sensory information

Perception is the organization, identification, and interpretation of sensory information in order to represent and understand the presented information or environment. All perception involves signals that go through the nervous system, which in turn result from physical or chemical stimulation of the sensory system. Vision involves light striking the retina of the eye; smell is mediated by odor molecules; and hearing involves pressure waves.

An illusion is a distortion of the senses, which can reveal how the mind normally organizes and interprets sensory stimulation. Although illusions distort the human perception of reality, they are generally shared by most people.

<span class="mw-page-title-main">Attention</span> Psychological process of selectively eating and have discrete aspects of information

Attention is the concentration of awareness on some phenomenon to the exclusion of other stimuli. It is a process of selectively concentrating on a discrete aspect of information, whether considered subjective or objective. William James (1890) wrote that "Attention is the taking possession by the mind, in clear and vivid form, of one out of what seem several simultaneously possible objects or trains of thought. Focalization, concentration, of consciousness are of its essence." Attention has also been described as the allocation of limited cognitive processing resources. Attention is manifested by an attentional bottleneck, in terms of the amount of data the brain can process each second; for example, in human vision, only less than 1% of the visual input data can enter the bottleneck, leading to inattentional blindness.

<span class="mw-page-title-main">McGurk effect</span> Perceptual illusion

The McGurk effect is a perceptual phenomenon that demonstrates an interaction between hearing and vision in speech perception. The illusion occurs when the auditory component of one sound is paired with the visual component of another sound, leading to the perception of a third sound. The visual information a person gets from seeing a person speak changes the way they hear the sound. If a person is getting poor-quality auditory information but good-quality visual information, they may be more likely to experience the McGurk effect. Integration abilities for audio and visual information may also influence whether a person will experience the effect. People who are better at sensory integration have been shown to be more susceptible to the effect. Many people are affected differently by the McGurk effect based on many factors, including brain damage and other disorders.

<span class="mw-page-title-main">Temporal lobe</span> One of the four lobes of the mammalian brain

The temporal lobe is one of the four major lobes of the cerebral cortex in the brain of mammals. The temporal lobe is located beneath the lateral fissure on both cerebral hemispheres of the mammalian brain.

<span class="mw-page-title-main">Insular cortex</span> Portion of the mammalian cerebral cortex

The insular cortex is a portion of the o cerebral cortex folded deep within the lateral sulcus within each hemisphere of the mammalian brain.

Auditory imagery is a form of mental imagery that is used to organize and analyze sounds when there is no external auditory stimulus present. This form of imagery is broken up into a couple of auditory modalities such as verbal imagery or musical imagery. This modality of mental imagery differs from other sensory images such as motor imagery or visual imagery. The vividness and detail of auditory imagery can vary from person to person depending on their background and condition of their brain. Through all of the research developed to understand auditory imagery behavioral neuroscientists have found that the auditory images developed in subjects' minds are generated in real time and consist of fairly precise information about quantifiable auditory properties as well as melodic and harmonic relationships. These studies have been able to recently gain confirmation and recognition due to the arrival of Positron emission tomography and fMRI scans that can confirm a physiological and psychological correlation.

Multisensory integration, also known as multimodal integration, is the study of how information from the different sensory modalities may be integrated by the nervous system. A coherent representation of objects combining modalities enables animals to have meaningful perceptual experiences. Indeed, multisensory integration is central to adaptive behavior because it allows animals to perceive a world of coherent perceptual entities. Multisensory integration also deals with how different sensory modalities interact with one another and alter each other's processing.

The Levels of Processing model, created by Fergus I. M. Craik and Robert S. Lockhart in 1972, describes memory recall of stimuli as a function of the depth of mental processing. Deeper levels of analysis produce more elaborate, longer-lasting, and stronger memory traces than shallow levels of analysis. Depth of processing falls on a shallow to deep continuum. Shallow processing leads to a fragile memory trace that is susceptible to rapid decay. Conversely, deep processing results in a more durable memory trace. There are three levels of processing in this model. Structural processing, or visual, is when we remember only the physical quality of the word E.g how the word is spelled and how letters look. Phonemic processing includes remembering the word by the way it sounds. E.G the word tall rhymes with fall. Lastly, we have semantic processing in which we encode the meaning of the word with another word that is similar of has similar meaning. Once the word is perceived, the brain allows for a deeper processing.

<span class="mw-page-title-main">Cocktail party effect</span> Ability of the brain to focus on a single auditory stimulus by filtering out background noise

The cocktail party effect is the phenomenon of the brain's ability to focus one's auditory attention on a particular stimulus while filtering out a range of other stimuli, such as when a partygoer can focus on a single conversation in a noisy room. Listeners have the ability to both segregate different stimuli into different streams, and subsequently decide which streams are most pertinent to them.

<span class="mw-page-title-main">Change blindness</span> Perceptual phenomenon

Change blindness is a perceptual phenomenon that occurs when a change in a visual stimulus is introduced and the observer does not notice it. For example, observers often fail to notice major differences introduced into an image while it flickers off and on again. People's poor ability to detect changes has been argued to reflect fundamental limitations of human attention. Change blindness has become a highly researched topic and some have argued that it may have important practical implications in areas such as eyewitness testimony and distractions while driving.

Speech perception is the process by which the sounds of language are heard, interpreted, and understood. The study of speech perception is closely linked to the fields of phonology and phonetics in linguistics and cognitive psychology and perception in psychology. Research in speech perception seeks to understand how human listeners recognize speech sounds and use this information to understand spoken language. Speech perception research has applications in building computer systems that can recognize speech, in improving speech recognition for hearing- and language-impaired listeners, and in foreign-language teaching.

The mismatch negativity (MMN) or mismatch field (MMF) is a component of the event-related potential (ERP) to an odd stimulus in a sequence of stimuli. It arises from electrical activity in the brain and is studied within the field of cognitive neuroscience and psychology. It can occur in any sensory system, but has most frequently been studied for hearing and for vision, in which case it is abbreviated to vMMN. The (v)MMN occurs after an infrequent change in a repetitive sequence of stimuli For example, a rare deviant (d) stimulus can be interspersed among a series of frequent standard (s) stimuli. In hearing, a deviant sound can differ from the standards in one or more perceptual features such as pitch, duration, loudness, or location. The MMN can be elicited regardless of whether someone is paying attention to the sequence. During auditory sequences, a person can be reading or watching a silent subtitled movie, yet still show a clear MMN. In the case of visual stimuli, the MMN occurs after an infrequent change in a repetitive sequence of images.

<span class="mw-page-title-main">Negative priming</span> Initial stimulus inhibits response to subsequent stimulus

Negative priming is an implicit memory effect in which prior exposure to a stimulus unfavorably influences the response to the same stimulus. It falls under the category of priming, which refers to the change in the response towards a stimulus due to a subconscious memory effect. Negative priming describes the slow and error-prone reaction to a stimulus that is previously ignored. For example, a subject may be imagined trying to pick a red pen from a pen holder. The red pen becomes the target of attention, so the subject responds by moving their hand towards it. At this time, they mentally block out all other pens as distractors to aid in closing in on just the red pen. After repeatedly picking the red pen over the others, switching to the blue pen results in a momentary delay picking the pen out. The slow reaction due to the change of the distractor stimulus to target stimulus is called the negative priming effect.

In neuroscience, the visual P200 or P2 is a waveform component or feature of the event-related potential (ERP) measured at the human scalp. Like other potential changes measurable from the scalp, this effect is believed to reflect the post-synaptic activity of a specific neural process. The P2 component, also known as the P200, is so named because it is a positive going electrical potential that peaks at about 200 milliseconds after the onset of some external stimulus. This component is often distributed around the centro-frontal and the parieto-occipital areas of the scalp. It is generally found to be maximal around the vertex of the scalp, however there have been some topographical differences noted in ERP studies of the P2 in different experimental conditions.

Chronostasis is a type of temporal illusion in which the first impression following the introduction of a new event or task-demand to the brain can appear to be extended in time. For example, chronostasis temporarily occurs when fixating on a target stimulus, immediately following a saccade. This elicits an overestimation in the temporal duration for which that target stimulus was perceived. This effect can extend apparent durations by up to half a second and is consistent with the idea that the visual system models events prior to perception.

Pre-attentive processing is the subconscious accumulation of information from the environment. All available information is pre-attentively processed. Then, the brain filters and processes what is important. Information that has the highest salience or relevance to what a person is thinking about is selected for further and more complete analysis by conscious (attentive) processing. Understanding how pre-attentive processing works is useful in advertising, in education, and for prediction of cognitive ability.

The Colavita visual dominance effect refers to the phenomenon in which study participants respond more often to the visual component of an audiovisual stimulus, when presented with bimodal stimuli.

<span class="mw-page-title-main">Mechanisms of mindfulness meditation</span>

Mindfulness has been defined in modern psychological terms as "paying attention to relevant aspects of experience in a nonjudgmental manner", and maintaining attention on present moment experience with an attitude of openness and acceptance. Meditation is a platform used to achieve mindfulness. Both practices, mindfulness and meditation, have been "directly inspired from the Buddhist tradition" and have been widely promoted by Jon Kabat-Zinn. Mindfulness meditation has been shown to have a positive impact on several psychiatric problems such as depression and therefore has formed the basis of mindfulness programs such as mindfulness-based cognitive therapy, mindfulness-based stress reduction and mindfulness-based pain management. The applications of mindfulness meditation are well established, however the mechanisms that underlie this practice are yet to be fully understood. Many tests and studies on soldiers with PTSD have shown tremendous positive results in decreasing stress levels and being able to cope with problems of the past, paving the way for more tests and studies to normalize and accept mindful based meditation and research, not only for soldiers with PTSD, but numerous mental inabilities or disabilities.

Interindividual differences in perception describes the effect that differences in brain structure or factors such as culture, upbringing and environment have on the perception of humans. Interindividual variability is usually regarded as a source of noise for research. However, in recent years, it has become an interesting source to study sensory mechanisms and understand human behavior. With the help of modern neuroimaging methods such as fMRI and EEG, individual differences in perception could be related to the underlying brain mechanisms. This has helped to explain differences in behavior and cognition across the population. Common methods include studying the perception of illusions, as they can effectively demonstrate how different aspects such as culture, genetics and the environment can influence human behavior.

References

  1. 1 2 Snyder JS, Gregg MK, Weintraub DM and Alain C (2012) Attention, awareness, and the perception of auditory scenes. Front. Psychology 3:15. Snyder, J. S.; Gregg, M. K.; Weintraub, D. M.; Alain, C. (2012). "Attention, Awareness, and the Perception of Auditory Scenes". Frontiers in Psychology. 3: 15. doi: 10.3389/fpsyg.2012.00015 . PMC   3273855 . PMID   22347201.
  2. 1 2 Nieuwland, M., & Van Berkum, J. (2005). Testing the limits of the semantic illusion phenomenon: Erps reveal temporary semantic change deafness in discourse comprehension. Cognitive Brain Research, 24(3), 691-701. Nieuwland, M. S.; Van Berkum, J. J. A. (2005). "Testing the limits of the semantic illusion phenomenon: ERPs reveal temporary semantic change deafness in discourse comprehension". Cognitive Brain Research. 24 (3): 691–701. doi:10.1016/j.cogbrainres.2005.04.003. hdl: 11858/00-001M-0000-0012-1D58-B . PMID   15894468.
  3. 1 2 Eramudugolla, R., Irvine, D., McAnally, K., Martin, R., & Mattingley, J. (2005). Directed attention eliminates ‘change deafness’ in complex auditory scenes.15(12), 1108-1113. Eramudugolla, R.; Irvine, D. R. F.; McAnally, K. I.; Martin, R. L.; Mattingley, J. B. (2005). "Directed Attention Eliminates 'Change Deafness' in Complex Auditory Scenes". Current Biology. 15 (12): 1108–1113. doi: 10.1016/j.cub.2005.05.051 . PMID   15964275.
  4. Agres, K., & Krumhansel, C. (2008). Musical change deafness: the inability to detect change in a non-speech auditory domain. in B.C. Love, K. McRae, & V.M. Sloutsky (Eds.), Proceedings of the 30th annual conference of the cognitive science society (pp. 975-980), Austin, TX: Cognitive Science Society.
  5. 1 2 Puschmann, S., Weerda, R., Klump, G., & Thiel, C. (2013). Segregating the neural correlates of physical and perceived change in auditory input using the change deafness effect. Journal of Cognitive Neuroscience, 25(5), 730-742. Puschmann, S.; Weerda, R.; Klump, G.; Thiel, C. M. (2013). "Segregating the Neural Correlates of Physical and Perceived Change in Auditory Input using the Change Deafness Effect". Journal of Cognitive Neuroscience. 25 (5): 730–742. doi:10.1162/jocn_a_00346. PMID   23249352. S2CID   13397662.
  6. Menon V, Uddin LQ (2010) Saliency, switching, attention and control: a network model of insula function. Brain Struct Funct 214: 655-667. Menon, V.; Uddin, L. Q. (2010). "Saliency, switching, attention and control: A network model of insula function". Brain Structure and Function. 214 (5–6): 655–667. doi:10.1007/s00429-010-0262-0. PMC   2899886 . PMID   20512370.
  7. Puschmann, S., Sandmann, P., Ahrens, J., Thorne, J., Weerda, R., Klump, G., Debener, S., & Thiel, C. (2013). Electrophysiological correlates of auditory change detection and change deafness in complex auditory scenes. Neuroimage, 75(15), 155-164. Puschmann, S.; Sandmann, P.; Ahrens, J.; Thorne, J.; Weerda, R.; Klump, G.; Debener, S.; Thiel, C. M. (2013). "Electrophysiological correlates of auditory change detection and change deafness in complex auditory scenes". NeuroImage. 75: 155–164. doi:10.1016/j.neuroimage.2013.02.037. PMID   23466938. S2CID   9743128.