Chloris gayana

Last updated

Chloris gayana
Chloris gayana (Poaceae), Mexico.jpg
Scientific classification OOjs UI icon edit-ltr.svg
Kingdom: Plantae
Clade: Tracheophytes
Clade: Angiosperms
Clade: Monocots
Clade: Commelinids
Order: Poales
Family: Poaceae
Genus: Chloris
Species:
C. gayana
Binomial name
Chloris gayana

Chloris gayana is a species of grass known by the common name Rhodes grass. It is native to Africa but it can be found throughout the tropical and subtropical world as a naturalized species.

Contents

It can grow in many types of habitat. It is also cultivated in some areas as a palatable graze for animals and a groundcover to reduce erosion and quickly revegetate denuded soil. [1] It is tolerant of moderately saline and alkaline soils and irrigation. [2] :2

Description

This is a perennial grass which can reach one half to nearly three meters in height and spreads via stolons. It forms tufts and can spread into wide monotypic stands. The inflorescence is a single or double whorl of fingerlike racemes up to 15 centimeters long. Each spikelet in the raceme is a few millimeters long and contains one or two fertile florets and up to four sterile florets.

Growing conditions

Its seasonal growth is in the spring and summer and its rainfall requirement is 600–750 mm per year. [3] This low rainfall requirement means that this grass can survive in drier places. Rhodes grass can grow in a variety of soil conditions. [4] Its ideal soil would be anything greater than a 4.3 pH level in terms of acidity. [5] :2 In addition to this, Chloris gayana has a moderate aluminum tolerance. [5] :2 The fact that this type of grass survives on little rainfall, can grow in low pH soils, and has a moderate tolerance to aluminum means that it may be beneficial to poor farmers in the sub-tropics. Less work is required to maintain this grass which means that the farmers can focus on other priorities. It is also beneficial to farmers who own land with poor soil.

Benefits from Chloris gayana can also be found in the plant's growth. The seed germinates quickly (1–7 days) depending on temperature. [5] :2 and it often achieves full ground cover within three months of sowing. [5] :2 This too is good for farmers when it comes to covering bare soil. The fact that Chloris gayana can grow quickly means that farmers could use it to protect the soil from eroding.

Stress tolerance

An important feature of Chloris gayana is its drought tolerance. [6] :70 The reason why it is drought tolerant can be found in its roots. Production may effect with mild drought period if it is cultivated for forage purpose. Chloris gayana roots are able to extract water at a depth of 4.25 meters. [3] Since this grass has good drought tolerance, it could also be beneficial to farmers for ensuring livestock are fed in times of drought.

Another important feature of Chloris gayana can be found in its salt tolerance. In terms of grass species, this type appears to be one of "the most salt-tolerant species" [7] :1583 in terms of grasses. In "saline conditions, plant growth is restricted". [7] :1574 Since Chloris gayana shows good salt tolerance, this type of grass can be beneficial to farmers who have salinity problems in their soil.

Genetic stocks

There are various genetic varieties of Chloris gayana that exist like Katambora, Pioneer and Callide. "Katambora" is an important genetic variety that originates from Zimbabwe. [3] It has been found to be more persistent on poorer soil than other genetic varieties. [5] :1 [5] :3 Katambora is meant for hay production because it is leafier, finer-stemmed, and produces better dry matter. [5] :3It is important to note that "Katambora" is diploid type. [5] :3 Diploid types of Chloris gayana in general show good frost tolerance, salt tolerance, and drought tolerance. [5] :3

A different type of Chloris gayana are tetraploid types. Tetraploid types of Chloris gayana have a major characteristic in which they flower late in the season which means the feed quality is maintained longer [5] :3 It has also been determined that tetraploid varieties of Chloris gayana have "higher concentrations of nutrients". [8] :1128 It is important to note however that both tetraploid and diploid varieties at the pre-flowering stage of growth have "adequate concentrations of nutrients". [8] :1128 Understanding the different genetic varieties of Chloris gayana is beneficial to farmers. Knowing the different types will allow a farmer to choose what is best for their situation.

Practical information

Chloris gayana can be very helpful to farmers and NGOs in terms of sustainable agricultural development. Pasture establishment for farmers "demand high capital cost and labour." [9] A possible solution to this would be to intercrop Chloris gayana with food crops. This would be economically feasible for resource poor farmers. [9] Chloris gayana can be undersown to maize after final weeding of the crop without affecting maize grain yield. [9] In addition to this, "growing cultivated forages, in association with food crops, can contribute to the improvement of the qualitative and quantitative supply of livestock feed." [10] :38 Intercropping Chloris gayana with a food crop is a practical method farmers can use when it comes to sustainable agricultural development.

There are some practical tips that farmers should be aware of when it comes to harvesting Chloris gayana. For example, "the crop is most productive in the first two or three cuts". [4] The nutritive value of this forage is high when the grass is young, but it decreases with maturity. [11] Farmers should be aware of this in order to make sure that they can take full advantage of this type of grass. In terms of grazing, Chloris gayana should be grazed when the weather is not appropriate for harvesting. [4] This too is important for being able to use this type of grass efficiently.

There are other practical uses that farmers can benefit from when growing Chloris gayana. It can help with weed control because it can outcompete and smother weeds. [12] :2 In addition to this, Chloris gayana is also able to deal with soil erosion on sloped fields by holding topsoil. [12] :2Chloris gayana can also be mixed with legumes such as cowpea, stylo, and alfalfa which also improves soil nutrient levels. [12] :3 Managing weeds, soil erosion, and improving the soil are all important issues a farmer must deal with. Chloris gayana can be a good option for a farmer when it comes to trying to solve these problems.

Related Research Articles

Abiotic stress is the negative impact of non-living factors on the living organisms in a specific environment. The non-living variable must influence the environment beyond its normal range of variation to adversely affect the population performance or individual physiology of the organism in a significant way.

<span class="mw-page-title-main">Teff</span> Edible annual grass native to the Horn of Africa

Teff, also known as Eragrostis tef, Williams lovegrass, or annual bunch grass, is an annual grass, a species of lovegrass native to the Horn of Africa, notably to both Eritrea and Ethiopia. It is cultivated for its edible seeds, also known as teff. Teff was one of the earliest plants domesticated. It is one of the most important staple crops in Ethiopia and Eritrea.

<span class="mw-page-title-main">Alfalfa</span> Perennial flowering plant

Alfalfa, also called lucerne, is a perennial flowering plant in the legume family Fabaceae. It is cultivated as an important forage crop in many countries around the world. It is used for grazing, hay, and silage, as well as a green manure and cover crop. The name alfalfa is used in North America. The name lucerne is more commonly used in the United Kingdom, South Africa, Australia, and New Zealand. The plant superficially resembles clover, especially while young, when trifoliate leaves comprising round leaflets predominate. Later in maturity, leaflets are elongated. It has clusters of small purple flowers followed by fruits spiralled in two to three turns containing 10–20 seeds. Alfalfa is native to warmer temperate climates. It has been cultivated as livestock fodder since at least the era of the ancient Greeks and Romans.

<i>Trifolium repens</i> Flowering plant, bean family Fabaceae

Trifolium repens, the white clover, is a herbaceous perennial plant in the bean family Fabaceae. It is native to Europe, including the British Isles, and central Asia and is one of the most widely cultivated types of clover. It has been widely introduced worldwide as a forage crop, and is now also common in most grassy areas of North America, Australia and New Zealand. The species includes varieties often classed as small, intermediate and large, according to height, which reflects petiole length. The term 'white clover' is applied to the species in general, 'Dutch clover' is often applied to intermediate varieties, and 'ladino clover' is applied to large varieties.

<i>Vigna aconitifolia</i> Species of flowering plant

Vigna aconitifolia is a drought-resistant legume, commonly grown in arid and semi-arid regions of India. It is commonly called mat bean, moth bean, matki or dew bean. The pods, sprouts and protein-rich seeds of this crop are commonly consumed in India. Moth bean can be grown on many soil types, and can also act as a pasture legume.

<i>Cenchrus purpureus</i> Species of grass

Cenchrus purpureus, synonym Pennisetum purpureum, also known as Napier grass, elephant grass or Uganda grass, is a species of perennial tropical grass native to the African grasslands. It has low water and nutrient requirements, and therefore can make use of otherwise uncultivated lands.

<i>Atriplex semibaccata</i> Species of plant

Atriplex semibaccata, commonly known as Australian saltbush, berry saltbush, or creeping saltbush, is a species of flowering plant in the family Amaranthaceae and is endemic to Australia. It is a perennial herb native to Western Australia, South Australia, Queensland and New South Wales, but has been introduced into other states and to overseas countries. It flowers and fruits in spring, and propagates from seed when the fruit splits open. This species of saltbush is adapted to inconsistent rainfall, temperature and humidity extremes and to poor soil. It is used for rehabilitation, medicine, as a cover crop and for fodder. Its introduction to other countries has had an environmental and economic impact on them.

<i>Agropyron cristatum</i> Species of grass

Agropyron cristatum, the crested wheat grass, crested wheatgrass, fairway crested wheat grass, is a species in the family Poaceae. This plant is often used as forage and erosion control. It is well known as a widespread introduced species on the prairies of the United States and Canada.

Agropyron desertorum is a plant species in the family Poaceae which was originally from Russian and Siberian steppes until it was introduced to the United States from there between 1907 and 1913. Prior to its introduction it was believed that Desert wheatgrass and crested wheatgrass are different species. Currently it can still be found in Central and Western United States, except for Idaho, Kansas, Louisiana, Minnesota, Oklahoma, and Washington.

In regard to agriculture, Abiotic stress is stress produced by natural environment factors such as extreme temperatures, wind, drought, and salinity. Humankind doesn't have much control over abiotic stresses. It is very important for humans to understand how stress factors affect plants and other living things so that we can take some preventative measures.

<i>Hordeum brachyantherum</i> Species of grass

Hordeum brachyantherum, known by the common name meadow barley, is a species of barley. It is native to western North America from Alaska to northern Mexico, coastal areas of easternmost Russia (Kamchatka), and a small area of coastal Newfoundland.

Upland rice is a variety of rice grown on dry soil rather than flooded rice paddies.

<span class="mw-page-title-main">Perennial rice</span> Varieties of rice that can grow season after season without re-seeding

Perennial rice are varieties of long-lived rice that are capable of regrowing season after season without reseeding; they are being developed by plant geneticists at several institutions. Although these varieties are genetically distinct and will be adapted for different climates and cropping systems, their lifespan is so different from other kinds of rice that they are collectively called perennial rice. Perennial rice—like many other perennial plants—can spread by horizontal stems below or just above the surface of the soil but they also reproduce sexually by producing flowers, pollen and seeds. As with any other grain crop, it is the seeds that are harvested and eaten by humans.

<i>Psathyrostachys juncea</i> Species of grass

Psathyrostachys juncea is a species of grass known by the common name Russian wildrye. It was formerly classified as Elymus junceus. It is native to Russia and China, and has been introduced to other parts of the world, such as Canada and the United States. Psathyrostachys juncea is a great source of food for grazing animals, as it has high nutrition value in its dense basal leaves, even in the late summer and autumn seasons. This species can grow and prosper in many harsh environments, making it an ideal candidate for improvement as it can grow in areas were farming is difficult. This species is a drought-resistant forage plant and can survive during the cool seasons. It is also a cross-pollinator and is self-sterile. This means that P. juncea cannot self-fertilize; it must find another plant of the same species with which to exchange gametes. Self-sterilization increases the genetic diversity of a species.

<i>Dichanthium annulatum</i> Species of plant

Dichanthium annulatum is a species of grass in the family Poaceae. It is commonly used as a forage for livestock.

<i>Centrosema pubescens</i> Species of legume

Centrosema pubescens, common name centro or butterfly pea, is a legume in the family Fabaceae, subfamily Faboideae, and tribe Phaseolae. It is native to Central and South America and cultivated in other tropical areas as a forage for livestock.

<i>Digitaria eriantha</i> Species of grass

Digitaria eriantha, commonly known as digitgrass or Pangola-grass, is a grass grown in tropical and subtropical climates. It grows relatively well in various soils, but grows especially well in moist soils. It is tolerant to droughts, water lodging, suppresses weeds and grows relatively quickly after grazing. This grass demonstrates great potential for farmers in Africa in subtropical and tropical climates, mostly for livestock feed.

<i>Neustanthus</i> Species of legume

Neustanthus is a monotypic genus of flowering plants belonging to the pea family Fabaceae and its tribe Phaseoleae. The only species is Neustanthus phaseoloides, called tropical kudzu. This species is a forage crop and cover crop used in the tropics. It is known as puero in Australia and tropical kudzu in most tropical regions.

<span class="mw-page-title-main">Biosaline agriculture</span> Production of crops in salt-rich conditions

Biosaline agriculture is the production and growth of plants in saline rich groundwater and/or soil. In water scarce locations, salinity poses a serious threat to agriculture due to its toxicity to most plants. Abiotic stressors such as salinity, extreme temperatures, and drought make plant growth difficult in many climate regions. Integration of biosaline solutions is becoming necessary in arid and semiarid climates where freshwater abundance is low and seawater is ample. Salt-tolerant plants that flourish in high-salinity conditions are called halophytes. Halophyte implementation has the potential to restore salt-rich environments, provide for global food demands, produce medicine and biofuels, and conserve fresh water.

HB4 wheat is a type of wheat that has been genetically modified by introducing sunflower genes, with the objective of improving crop productivity. Wheat, along with corn, rice and soybeans, constitute the basis of world food, and different scientific research was focused on improving its productivity. The improvements in food production achieved in the 90's agricultural production could equal the food demand of the world population, thanks to different technological improvements.

References

  1. "Tropical Forages". Archived from the original on 2017-10-17. Retrieved 2009-03-11.
  2. Purdue Horticulture
  3. 1 2 3 Archived 2017-06-19 at the Wayback Machine Chloris gayana, Food and Agricultural Organization of the United Nations
  4. 1 2 3 Suttie, J. M.; Food and Agriculture Organization of the United Nations (2000). "Hay Crops – Cereals and Grasses". Hay and Straw Conservation: For Small-scale Farming and Pastoral Conditions. Food & Agriculture Org. pp. 63–86. ISBN   978-92-5-104458-2.
  5. 1 2 3 4 5 6 7 8 9 10 Moore, Geoff; Sanford, Paul; Wiley, Tim (1 December 2006). "Perennial pastures for Western Australia". Bulletins. Department of Agriculture and Food, Western Australia.
  6. Ponsens, J.; Hanson, J.; Schellberg, J.; Moeseler, B.M. (July 2010). "Characterization of phenotypic diversity, yield and response to drought stress in a collection of Rhodes grass (Chloris gayana Kunth) accessions". Field Crops Research. 118 (1): 57–72. doi:10.1016/j.fcr.2010.04.008.
  7. 1 2 Deifel, Kurt S.; Kopittke, Peter M.; Menzies, Neal W. (September 2006). "Growth Response of Various Perennial Grasses to Increasing Salinity". Journal of Plant Nutrition. 29 (9): 1573–1584. doi:10.1080/01904160600848870. S2CID   85308838.
  8. 1 2 Jones, R. J.; Loch, D. S.; LeFeuvre, R. P. (1995). "Differences in mineral concentration among diploid and tetraploid cultivars of rhodesgrass (Chloris gayana)". Australian Journal of Experimental Agriculture. 35 (8): 1123–1129. doi:10.1071/ea9951123. ProQuest   48310796.
  9. 1 2 3 Tadesse, Alemu (1990), The Unexploited Potential of Improved Forages in the Mid-Altitude and Lowland Areas of Ethiopia, Institute of Agricultural Research Addis Ababa, Ethiopia, http://www.fao.org/wairdocs/ilri/x5536e/x5536e10.htm#establishment_of_improved_forages_in_natural_pastures
  10. Hassen, A.; Gizachew, L.; Rethman, N. F. G.; Niekerk, WA van (1 March 2007). "Influence of undersowing perennial forages in maize on grain, fodder yield and soil properties in the sub-humid region of western Ethiopia". African Journal of Range & Forage Science. 24 (1): 35–41. doi:10.2989/102201107780178168. hdl: 2263/5772 . S2CID   54080270.
  11. Heuzé V., Tran G., Boudon A., Lebas F., 2016. Rhodes grass (Chloris gayana). Feedipedia, a programme by INRA, CIRAD, AFZ and FAO. https://www.feedipedia.org/node/480 Last updated on April 15, 2016, 14:23
  12. 1 2 3 Valenzuela, Hector; Smith, Jody (August 2002). Rhodesgrass (Report). hdl: 10125/12746 .