Chlorophane

Last updated
Chlorophane
Fluorite, var. Chlorophane.jpg
General
Category Halide mineral
Formula
(repeating unit)
CaF2
Strunz classification 3.AB.25
Crystal system Isometric
Crystal class Hexoctahedral (m3m)
H–M symbol: (4/m 3 2/m)
(cF12)
Space group Fm3m (No. 225)
Unit cell a = 5.4626 Å; Z = 4
Identification
ColorWhite, reddish pink or red (fluorescence/ phosphorescence in emerald green)
Crystal habit Well-formed coarse sized crystals; also nodular, botryoidal, rarely columnar or fibrous; granular, massive
Twinning Common on {111}, interpenetrant, flattened
Cleavage Octahedral, perfect on {111}, parting on {011}
Fracture Subconchoidal to uneven
Tenacity Brittle
Mohs scale hardness4 (defining mineral)
Luster Vitreous
Streak White
Specific gravity 3.175–3.184; to 3.56 if high in rare-earth elements
Optical propertiesIsotropic; weak anomalous anisotropism
Refractive index 1.433–1.448
Fusibility 3
Solubility slightly water soluble and in hot hydrochloric acid

Chlorophane, also sometimes known as pyroemerald, cobra stone, and pyrosmaragd, is a rare variety of the mineral fluorite with the unusual combined properties of thermoluminescence, thermophosphoresence, triboluminescence, and fluorescence: it will emit light in the visible spectrum when exposed to ultraviolet light, when heated, and when rubbed; if heated, it will continue to emit light for a period of time after a heat source is withdrawn. The small amount of heat generated by being held in the hand has been reported as enough to induce luminescence, though this may be the result of experimental error. [1] Although chemically very similar to fluorite, chlorophane has several impurities including magnesium, aluminum, manganese, and traces of iron and sodium (none of which occur in fluorite). As of 2013 it was still not known which if any of these impurities imparts to chlorophane the luminescent properties that distinguish it from fluorite. [2] Some samples of chlorophane, particularly those exposed to high temperatures, will only luminesce once or will do so with only weakened intensity over time. [3] A very bright luminescence can be achieved at between 200 °C (392 °F) and 300 °C (572 °F), [4] and mineralogists once believed that it would glow indefinitely at temperatures of just 30 °C (86 °F), meaning that when exposed on the ground in warmer climates, the mineral would glow year-round. [5] This effect, which was reported many times without having been observed, was eventually attributed in part to a combination of both heat and light acting on the mineral.

The unusual properties of chlorophane have been attributed to samarium, terbium, dysprosium, gadolinium, ytterbium, and yttrium; none of these rare earth elements, however, has been consistently found in all chlorophane specimens. [2] [6]

Related Research Articles

<span class="mw-page-title-main">Europium</span> Chemical element, symbol Eu and atomic number 63

Europium is a chemical element with the symbol Eu and atomic number 63. Europium is the most reactive lanthanide by far, having to be stored under an inert fluid to protect it from atmospheric oxygen or moisture. Europium is also the softest lanthanide, as it can be dented with a fingernail and easily cut with a knife. When oxidation is removed a shiny-white metal is visible. Europium was isolated in 1901 and is named after the continent of Europe. Being a typical member of the lanthanide series, europium usually assumes the oxidation state +3, but the oxidation state +2 is also common. All europium compounds with oxidation state +2 are slightly reducing. Europium has no significant biological role and is relatively non-toxic as compared to other heavy metals. Most applications of europium exploit the phosphorescence of europium compounds. Europium is one of the rarest of the rare-earth elements on Earth.

<span class="mw-page-title-main">Fluorescence</span> Emission of light by a substance that has absorbed light

Fluorescence is the emission of light by a substance that has absorbed light or other electromagnetic radiation. It is a form of luminescence. In most cases, the emitted light has a longer wavelength, and therefore a lower photon energy, than the absorbed radiation. A perceptible example of fluorescence occurs when the absorbed radiation is in the ultraviolet region of the electromagnetic spectrum, while the emitted light is in the visible region; this gives the fluorescent substance a distinct color that can only be seen when the substance has been exposed to UV light. Fluorescent materials cease to glow nearly immediately when the radiation source stops, unlike phosphorescent materials, which continue to emit light for some time after.

<span class="mw-page-title-main">Gemstone</span> Piece of mineral crystal used to make jewelry

A gemstone is a piece of mineral crystal which, in cut and polished form, is used to make jewelry or other adornments. However, certain rocks and occasionally organic materials that are not minerals are also used for jewelry and are therefore often considered to be gemstones as well. Most gemstones are hard, but some soft minerals are used in jewelry because of their luster or other physical properties that have aesthetic value. Rarity and notoriety are other characteristics that lend value to gemstones.

<span class="mw-page-title-main">Ultraviolet</span> Form of electromagnetic radiation

Ultraviolet (UV) is a form of electromagnetic radiation with wavelength from 10 nm to 400 nm (750 THz), shorter than that of visible light, but longer than X-rays. UV radiation is present in sunlight, and constitutes about 10% of the total electromagnetic radiation output from the Sun. It is also produced by electric arcs, Cherenkov radiation, and specialized lights, such as mercury-vapor lamps, tanning lamps, and black lights. Although long-wavelength ultraviolet is not considered an ionizing radiation because its photons lack the energy to ionize atoms, it can cause chemical reactions and causes many substances to glow or fluoresce. Many practical applications, including chemical and biological effects, derive from the way that UV radiation can interact with organic molecules. These interactions can involve absorption or adjusting energy states in molecules, but do not necessarily involve heating.

<span class="mw-page-title-main">Ruby</span> Variety of corundum, mineral, gemstone

A ruby is a pinkish red to blood-red colored gemstone, a variety of the mineral corundum. Ruby is one of the most popular traditional jewelry gems and is very durable. Other varieties of gem-quality corundum are called sapphires. Ruby is one of the traditional cardinal gems, alongside amethyst, sapphire, emerald, and diamond. The word ruby comes from ruber, Latin for red. The color of a ruby is due to the element chromium.

<span class="mw-page-title-main">Fluorite</span> Mineral form of calcium fluoride

Fluorite (also called fluorspar) is the mineral form of calcium fluoride, CaF2. It belongs to the halide minerals. It crystallizes in isometric cubic habit, although octahedral and more complex isometric forms are not uncommon.

<span class="mw-page-title-main">Luminescence</span> Spontaneous emission of light by a substance

Luminescence is spontaneous emission of light by a substance not resulting from heat; or "cold light".

<span class="mw-page-title-main">Phosphor</span> Luminescent substance

A phosphor is a substance that exhibits the phenomenon of luminescence; it emits light when exposed to some type of radiant energy. The term is used both for fluorescent or phosphorescent substances which glow on exposure to ultraviolet or visible light, and cathodoluminescent substances which glow when struck by an electron beam in a cathode-ray tube.

<span class="mw-page-title-main">Fluorescent lamp</span> Lamp using fluorescence to produce light

A fluorescent lamp, or fluorescent tube, is a low-pressure mercury-vapor gas-discharge lamp that uses fluorescence to produce visible light. An electric current in the gas excites mercury vapor, which produces short-wave ultraviolet light that then causes a phosphor coating on the inside of the lamp to glow. A fluorescent lamp converts electrical energy into useful light much more efficiently than an incandescent lamp. The typical luminous efficacy of fluorescent lighting systems is 50–100 lumens per watt, several times the efficacy of incandescent bulbs with comparable light output. For comparison, the luminous efficacy of an incandescent bulb may only be 16 lumens per watt.

<span class="mw-page-title-main">Cold cathode</span> Type of electrode and part of cold cathode fluorescent lamp.

A cold cathode is a cathode that is not electrically heated by a filament. A cathode may be considered "cold" if it emits more electrons than can be supplied by thermionic emission alone. It is used in gas-discharge lamps, such as neon lamps, discharge tubes, and some types of vacuum tube. The other type of cathode is a hot cathode, which is heated by electric current passing through a filament. A cold cathode does not necessarily operate at a low temperature: it is often heated to its operating temperature by other methods, such as the current passing from the cathode into the gas.

<span class="mw-page-title-main">Incandescence</span> Emission of electromagnetic radiation from a hot body

Incandescence is the emission of electromagnetic radiation from a hot body as a result of its high temperature. The term derives from the Latin verb incandescere, to glow white. A common use of incandescence is the incandescent light bulb, now being phased out.

<span class="mw-page-title-main">Phosphorescence</span> Process in which energy absorbed by a substance is released relatively slowly in the form of light

Phosphorescence is a type of photoluminescence related to fluorescence. When exposed to light (radiation) of a shorter wavelength, a phosphorescent substance will glow, absorbing the light and reemitting it at a longer wavelength. Unlike fluorescence, a phosphorescent material does not immediately reemit the radiation it absorbs. Instead, a phosphorescent material absorbs some of the radiation energy and reemits it for a much longer time after the radiation source is removed.

<span class="mw-page-title-main">Blacklight</span> Light fixture that emits long-wave ultraviolet light and very little visible light

A blacklight, also called a UV-A light, Wood's lamp, or ultraviolet light, is a lamp that emits long-wave (UV-A) ultraviolet light and very little visible light. One type of lamp has a violet filter material, either on the bulb or in a separate glass filter in the lamp housing, which blocks most visible light and allows through UV, so the lamp has a dim violet glow when operating. Blacklight lamps which have this filter have a lighting industry designation that includes the letters "BLB". This stands for "blacklight blue". A second type of lamp produces ultraviolet but does not have the filter material, so it produces more visible light and has a blue color when operating. These tubes are made for use in "bug zapper" insect traps, and are identified by the industry designation "BL". This stands for "blacklight".

<span class="mw-page-title-main">F-center</span>

An F center or Farbe center is a type of crystallographic defect in which an anionic vacancy in a crystal lattice is occupied by one or more unpaired electrons. Electrons in such a vacancy in a crystal lattice tend to absorb light in the visible spectrum such that a material that is usually transparent becomes colored. The greater the number of F centers, the more intense the color of the compound. F centers are a type of color center.

<span class="mw-page-title-main">Zinc sulfide</span> Inorganic compound

Zinc sulfide is an inorganic compound with the chemical formula of ZnS. This is the main form of zinc found in nature, where it mainly occurs as the mineral sphalerite. Although this mineral is usually black because of various impurities, the pure material is white, and it is widely used as a pigment. In its dense synthetic form, zinc sulfide can be transparent, and it is used as a window for visible optics and infrared optics.

<span class="mw-page-title-main">Scheelite</span>

Scheelite is a calcium tungstate mineral with the chemical formula CaWO4. It is an important ore of tungsten (wolfram). Scheelite is originally named after Swedish chemist K. Scheele (1742-1786). Well-formed crystals are sought by collectors and are occasionally fashioned into gemstones when suitably free of flaws. Scheelite has been synthesized using the Czochralski process; the material produced may be used to imitate diamond, as a scintillator, or as a solid-state lasing medium. It was also used in radium paint in the same fashion as was zinc sulphide, and Thomas Edison invented a fluoroscope with a calcium tungstate-coated screen, making the images six times brighter than those with barium platinocyanide; the latter chemical allowed Röntgen to discover X-rays in early November 1895.

Neodymium(III) chloride or neodymium trichloride is a chemical compound of neodymium and chlorine with the formula NdCl3. This anhydrous compound is a mauve-colored solid that rapidly absorbs water on exposure to air to form a purple-colored hexahydrate, NdCl3·6H2O. Neodymium(III) chloride is produced from minerals monazite and bastnäsite using a complex multistage extraction process. The chloride has several important applications as an intermediate chemical for production of neodymium metal and neodymium-based lasers and optical fibers. Other applications include a catalyst in organic synthesis and in decomposition of waste water contamination, corrosion protection of aluminium and its alloys, and fluorescent labeling of organic molecules (DNA).

<span class="mw-page-title-main">Material properties of diamond</span>

Diamond is the allotrope of carbon in which the carbon atoms are arranged in the specific type of cubic lattice called diamond cubic. It is a crystal that is transparent to opaque and which is generally isotropic. Diamond is the hardest naturally occurring material known. Yet, due to important structural brittleness, bulk diamond's toughness is only fair to good. The precise tensile strength of bulk diamond is little known; however, compressive strength up to 60 GPa has been observed, and it could be as high as 90–100 GPa in the form of micro/nanometer-sized wires or needles, with a corresponding maximum tensile elastic strain in excess of 9%. The anisotropy of diamond hardness is carefully considered during diamond cutting. Diamond has a high refractive index (2.417) and moderate dispersion (0.044) properties that give cut diamonds their brilliance. Scientists classify diamonds into four main types according to the nature of crystallographic defects present. Trace impurities substitutionally replacing carbon atoms in a diamond's crystal structure, and in some cases structural defects, are responsible for the wide range of colors seen in diamond. Most diamonds are electrical insulators and extremely efficient thermal conductors. Unlike many other minerals, the specific gravity of diamond crystals (3.52) has rather small variation from diamond to diamond.

<span class="mw-page-title-main">Luminous paint</span> Paint that glows in the dark

Luminous paint or luminescent paint is paint that exhibits luminescence. In other words, it gives off visible light through fluorescence, phosphorescence, or radioluminescence. There are three types of luminous paints: fluorescent paint, phosphorescent paint and radioluminescent paint.

Folktales about luminous gemstones are an almost worldwide motif in mythology and history among Asian, European, African, and American cultures. Some stories about light-emitting gems may have been based on luminescent and phosphorescent minerals such as diamonds.

References

  1. Suzanne Bettonville (2013). Rock Roles: Facts, Properties, and Lore of Gemstones. Lulu.com. p. 36. ISBN   978-1-257-03762-9.
  2. 1 2 Jack DeMent (16 April 2013). Handbook of Fluorescent Gems and Minerals - An Exposition and Catalog of the Fluorescent and Phosphorescent Gems and Minerals, Including the Use of Ultraviolet Light in the Earth Sciences. Read Books Limited. p. 64. ISBN   978-1-4733-8276-3.
  3. Charles Palache; Harry Berman; Clifford Frondel (1951). The System of Mineralogy: Of James Dwight Dana and Edward Salisbury Dana, Yale University 1837-1892. Halides, nitrates, borates, carbonates, sulfates, phosphates, arsenates, tungstates, molybdates, etc. Wiley. p. 29.
  4. The Engineer. Morgan-Grampian (Publishers). 1881. p. 28.
  5. Gustave Le Bon (1908). ... The Evolution of Forces. K. Paul, Trench, Trübner & Company, Limited. p. 249.
  6. The Chemical News and Journal of Physical Science. Griffin, Bohn and Company. 1906. p. 290.