Chrome Azurol S

Last updated
Chrome Azurol S
Chrome Azurol S.svg
Names
Preferred IUPAC name
Trisodium 5-[(E)-(3-carboxy-5-methyl-4-oxocyclohexa-2,5-dien-1-ylidene)(2,6-dichloro-3-sulfonatophenyl)methyl]-3-methyl-2-oxidobenzoate
Other names
  • Mordant Blue 29
  • C.I. 43825
  • Alberon
Identifiers
3D model (JSmol)
ECHA InfoCard 100.015.262 OOjs UI icon edit-ltr-progressive.svg
PubChem CID
UNII
  • InChI=1S/C23H16Cl2O9S.3Na/c1-9-5-11(7-13(20(9)26)22(28)29)17(12-6-10(2)21(27)14(8-12)23(30)31)18-15(24)3-4-16(19(18)25)35(32,33)34;;;/h3-8,26H,1-2H3,(H,28,29)(H,30,31)(H,32,33,34);;;/q;3*+1/p-3/b17-12+;;;
    Key: FUIZKNBTOOKONL-DPSBJRLESA-K
  • CC1=CC(=CC(=C1[O-])C(=O)[O-])C(=C2C=C(C(=O)C(=C2)C(=O)O)C)C3=C(C=CC(=C3Cl)S(=O)(=O)[O-])Cl.[Na+].[Na+].[Na+]
Properties
C23H13Cl2Na3O9S
Molar mass 605.28 g·mol−1
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).

Chrome Azurol S is a histological dye used in biomedical research. [1] [2]

Chrome Azural S (CAS) is a common spectrophotometric reagent for detection of certain metals like aluminum which can be toxic in excess and can contribute to people with neurodegenerative disorders. [3] CAS is used to provide quantitative and qualitative information on molecules of interest like aluminum and siderophores. [4] Qualitatively a color change can be observed while also allowing to quantitatively determine concentration of certain ions.

Related Research Articles

<i>In vitro</i> Latin term meaning outside a natural biological environment

In vitro studies are performed with microorganisms, cells, or biological molecules outside their normal biological context. Colloquially called "test-tube experiments", these studies in biology and its subdisciplines are traditionally done in labware such as test tubes, flasks, Petri dishes, and microtiter plates. Studies conducted using components of an organism that have been isolated from their usual biological surroundings permit a more detailed or more convenient analysis than can be done with whole organisms; however, results obtained from in vitro experiments may not fully or accurately predict the effects on a whole organism. In contrast to in vitro experiments, in vivo studies are those conducted in living organisms, including humans, known as clinical trials, and whole plants.

Molecular biology is the study of chemical and physical structure of biological macromolecules. It is a branch of biology that seeks to understand the molecular basis of biological activity in and between cells, including biomolecular synthesis, modification, mechanisms, and interactions.

<span class="mw-page-title-main">ELISA</span> Method to detect an antigen using an antibody and enzyme

The enzyme-linked immunosorbent assay (ELISA) is a commonly used analytical biochemistry assay, first described by Eva Engvall and Peter Perlmann in 1971. The assay uses a solid-phase type of enzyme immunoassay (EIA) to detect the presence of a ligand in a liquid sample using antibodies directed against the protein to be measured. ELISA has been used as a diagnostic tool in medicine, plant pathology, and biotechnology, as well as a quality control check in various industries.

<span class="mw-page-title-main">Western blot</span> Analytical technique used in molecular biology

The western blot, or western blotting, is a widely used analytical technique in molecular biology and immunogenetics to detect specific proteins in a sample of tissue homogenate or extract. Besides detecting the proteins, this technique is also utilized to visualize, distinguish, and quantify the different proteins in a complicated protein combination.

An assay is an investigative (analytic) procedure in laboratory medicine, mining, pharmacology, environmental biology and molecular biology for qualitatively assessing or quantitatively measuring the presence, amount, or functional activity of a target entity. The measured entity is often called the analyte, the measurand, or the target of the assay. The analyte can be a drug, biochemical substance, chemical element or compound, or cell in an organism or organic sample. An assay usually aims to measure an analyte's intensive property and express it in the relevant measurement unit.

In biochemistry, biotinylation is the process of covalently attaching biotin to a protein, nucleic acid or other molecule. Biotinylation is rapid, specific and is unlikely to disturb the natural function of the molecule due to the small size of biotin. Biotin binds to streptavidin and avidin with an extremely high affinity, fast on-rate, and high specificity, and these interactions are exploited in many areas of biotechnology to isolate biotinylated molecules of interest. Biotin-binding to streptavidin and avidin is resistant to extremes of heat, pH and proteolysis, making capture of biotinylated molecules possible in a wide variety of environments. Also, multiple biotin molecules can be conjugated to a protein of interest, which allows binding of multiple streptavidin, avidin or neutravidin protein molecules and increases the sensitivity of detection of the protein of interest. There is a large number of biotinylation reagents available that exploit the wide range of possible labelling methods. Due to the strong affinity between biotin and streptavidin, the purification of biotinylated proteins has been a widely used approach to identify protein-protein interactions and post-translational events such as ubiquitylation in molecular biology.

<span class="mw-page-title-main">Siderophore</span> Iron compounds secreted by microorganisms

Siderophores (Greek: "iron carrier") are small, high-affinity iron-chelating compounds that are secreted by microorganisms such as bacteria and fungi. They help the organism accumulate iron. Although a widening range of siderophore functions is now being appreciated, siderophores are among the strongest (highest affinity) Fe3+ binding agents known. Phytosiderophores are siderophores produced by plants.

<span class="mw-page-title-main">Devarda's alloy</span> Chemical compound

Devarda's alloy is an alloy of aluminium (44% – 46%), copper (49% – 51%) and zinc (4% – 6%).

The limit of detection is the lowest signal, or the lowest corresponding quantity to be determined from the signal, that can be observed with a sufficient degree of confidence or statistical significance. However, the exact threshold used to decide when a signal significantly emerges above the continuously fluctuating background noise remains arbitrary and is a matter of policy and often of debate among scientists, statisticians and regulators depending on the stakes in different fields.

<span class="mw-page-title-main">Real-time polymerase chain reaction</span> Laboratory technique of molecular biology

A real-time polymerase chain reaction is a laboratory technique of molecular biology based on the polymerase chain reaction (PCR). It monitors the amplification of a targeted DNA molecule during the PCR, not at its end, as in conventional PCR. Real-time PCR can be used quantitatively and semi-quantitatively.

<span class="mw-page-title-main">Elutriation</span> Particle separation


Elutriation is a process for separating particles based on their size, shape and density, using a stream of gas or liquid flowing in a direction usually opposite to the direction of sedimentation. This method is mainly used for particles smaller than 1 μm. The smaller or lighter particles rise to the top (overflow) because their terminal sedimentation velocities are lower than the velocity of the rising fluid. The terminal velocity of any particle in any medium can be calculated using Stokes' law if the particle's Reynolds number is below 0.2. Counterflow centrifugation elutriation is a related technique to separate cells.

<span class="mw-page-title-main">GUS reporter system</span>

The GUS reporter system is a reporter gene system, particularly useful in plant molecular biology and microbiology. Several kinds of GUS reporter gene assay are available, depending on the substrate used. The term GUS staining refers to the most common of these, a histochemical technique.

<span class="mw-page-title-main">Wet chemistry</span> Form of analytical chemistry

Wet chemistry is a form of analytical chemistry that uses classical methods such as observation to analyze materials. It is called wet chemistry since most analyzing is done in the liquid phase. Wet chemistry is also called bench chemistry since many tests are performed at lab benches.

<span class="mw-page-title-main">Zincke–Suhl reaction</span>

The Zincke–Suhl reaction is a special case of a Friedel-Crafts alkylation and was first described by Theodor Zincke and Suhl in 1906. Unlike the traditional Friedel-Crafts reaction, the reduction of the phenyl ring leads to a higher energy final product that can be used as starting material in the dienol–benzene rearrangement, among other reactions.

<span class="mw-page-title-main">Immunoproteomics</span>

Immunoproteomics is the study of large sets of proteins (proteomics) involved in the immune response.

Digital polymerase chain reaction is a biotechnological refinement of conventional polymerase chain reaction methods that can be used to directly quantify and clonally amplify nucleic acids strands including DNA, cDNA, or RNA. The key difference between dPCR and traditional PCR lies in the method of measuring nucleic acids amounts, with the former being a more precise method than PCR, though also more prone to error in the hands of inexperienced users. A "digital" measurement quantitatively and discretely measures a certain variable, whereas an “analog” measurement extrapolates certain measurements based on measured patterns. PCR carries out one reaction per single sample. dPCR also carries out a single reaction within a sample, however the sample is separated into a large number of partitions and the reaction is carried out in each partition individually. This separation allows a more reliable collection and sensitive measurement of nucleic acid amounts. The method has been demonstrated as useful for studying variations in gene sequences — such as copy number variants and point mutations — and it is routinely used for clonal amplification of samples for next-generation sequencing.

<span class="mw-page-title-main">Optomotor response</span> Innate orienting behavior common in fish and insects

In behavioral biology, the optomotor response is an innate, orienting behavior evoked by whole-field visual motion and is common to fish and insects during locomotion, such as swimming, walking and flying. The optomotor response has algorithmic properties such that the direction of the whole-field coherent motion dictates the direction of the behavioral output. For instance, when zebrafish larvae are presented with a sinusoidal black and white grating pattern, the larvae will turn and swim in the direction of the perceived motion.

<span class="mw-page-title-main">Pyoverdine</span> Chemical compound

Pyoverdines are fluorescent siderophores produced by certain pseudomonads. Pyoverdines are important virulence factors, and are required for pathogenesis in many biological models of infection. Their contributions to bacterial pathogenesis include providing a crucial nutrient, regulation of other virulence factors, supporting the formation of biofilms, and are increasingly recognized for having toxicity themselves.

Immunosurgery is a method of selectively removing the external cell layer (trophoblast) of a blastocyst through a cytotoxicity procedure. The protocol for immunosurgery includes preincubation with an antiserum, rinsing it with embryonic stem cell derivation media to remove the antibodies, exposing it to complement, and then removing the lysed trophoectoderm through a pipette. This technique is used to isolate the inner cell mass of the blastocyst. The trophoectoderm's cell junctions and tight epithelium "shield" the ICM from antibody binding by effectively making the cell impermeable to macromolecules.

<span class="mw-page-title-main">Adapromine</span> Chemical compound

Adapromine is an antiviral drug of the adamantane group related to amantadine (1-aminoadamantane), rimantadine, and memantine (1-amino-3,5-dimethyladamantane) that is marketed in Russia for the treatment and prevention of influenza. It is an alkyl analogue of rimantadine and is similar to rimantadine in its antiviral activity but possesses a broader spectrum of action, being effective against influenza viruses of both type A and B. Strains of type A influenza virus with resistance to adapromine and rimantadine and the related drug deitiforine were encountered in Mongolia and the Soviet Union in the 1980s.

References

  1. Berger, Selman A.; McKay, J. Brian (July 1974). "The photometric titration of Fe(III) with EDTA using tiron indicator". Microchimica Acta. 62 (4): 665–670. doi:10.1007/bf01218204. PMID   4216747. S2CID   32908378.
  2. Alexander, D.; Zuberer, David (1991-09-01). "Use of chrome azurol S reagents to evaluate siderophore production by rhizosphere bacteria". Biology and Fertility of Soils. 12: 39–45. doi:10.1007/BF00369386. S2CID   25744344.
  3. Ngarisan, Noor Izyan; Ngah, Che Wan Zanariah Che Wan; Ahmad, Musa; Kuswandi, Bambang (2014-11-01). "Optimization of polymer inclusion membranes (PIMs) preparation for immobilization of Chrome Azurol S for optical sensing of aluminum(III)". Sensors and Actuators B: Chemical. 203: 465–470. doi:10.1016/j.snb.2014.07.023. ISSN   0925-4005.
  4. Himpsl, Stephanie D.; Mobley, Harry L. T. (2019). "Siderophore Detection Using Chrome Azurol S and Cross-Feeding Assays". Proteus mirabilis. Methods in Molecular Biology. Vol. 2021. pp. 97–108. doi:10.1007/978-1-4939-9601-8_10. ISBN   978-1-4939-9600-1. ISSN   1940-6029. PMID   31309499. S2CID   196813888.