Chrysanthenone

Last updated
Chrysanthenone
Chrysanthenone.png
Chrysanthenone3D.png
Names
IUPAC name
2,7,7-Trimethylbicyclo[3.1.1]hept-2-en-6-one
Other names
2-Pinen-7-one
Identifiers
3D model (JSmol)
ChEBI
ChemSpider
KEGG
PubChem CID
UNII
  • InChI=1S/C10H14O/c1-6-4-5-7-9(11)8(6)10(7,2)3/h4,7-8H,5H2,1-3H3 Yes check.svgY
    Key: IECBDTGWSQNQID-UHFFFAOYSA-N Yes check.svgY
  • InChI=1/C10H14O/c1-6-4-5-7-9(11)8(6)10(7,2)3/h4,7-8H,5H2,1-3H3
    Key: IECBDTGWSQNQID-UHFFFAOYAO
  • O=C1C2/C(=C\CC1C2(C)C)C
Properties
C10H14O
Molar mass 150.22 g/mol
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
Yes check.svgY  verify  (what is  Yes check.svgYX mark.svgN ?)

Chrysanthenone (C10H14O) is a terpenoid. It can be produced from its isomer verbenone in a photochemical rearrangement reaction. [1]

Chrysanthenone synthesis.png

Related Research Articles

<span class="mw-page-title-main">Photochemistry</span> Sub-discipline of chemistry

Photochemistry is the branch of chemistry concerned with the chemical effects of light. Generally, this term is used to describe a chemical reaction caused by absorption of ultraviolet, visible light (400–750 nm) or infrared radiation (750–2500 nm).

Actinism is the property of solar radiation that leads to the production of photochemical and photobiological effects. Actinism is derived from the Ancient Greek ἀκτίς, ἀκτῖνος. The word actinism is found, for example, in the terminology of imaging technology, medicine, and chemistry, and the concept of actinism is applied, for example, in chemical photography and X-ray imaging.

In organic chemistry, an electrocyclic reaction is a type of pericyclic rearrangement where the net result is one pi bond being converted into one sigma bond or vice versa. These reactions are usually categorized by the following criteria:

In organic chemistry, a rearrangement reaction is a broad class of organic reactions where the carbon skeleton of a molecule is rearranged to give a structural isomer of the original molecule. Often a substituent moves from one atom to another atom in the same molecule, hence these reactions are usually intramolecular. In the example below, the substituent R moves from carbon atom 1 to carbon atom 2:

The Paternò–Büchi reaction, named after Emanuele Paternò and George Büchi, who established its basic utility and form, is a photochemical reaction, specifically a 2+2 photocycloaddition, which forms four-membered oxetane rings from an excited carbonyl and reacting with an alkene.

<span class="mw-page-title-main">Carbon tetraiodide</span> Chemical compound

Carbon tetraiodide is a tetrahalomethane with the molecular formula CI4. Being bright red, it is a relatively rare example of a highly colored methane derivative. It is only 2.3% by weight carbon, although other methane derivatives are known with still less carbon.

<span class="mw-page-title-main">Enzacamene</span> Chemical compound

Enzacamene is an organic camphor derivative that is used in the cosmetic industry for its ability to protect the skin against UV, specifically UV B radiation. As such, it is used in sunscreen lotions and other skincare products claiming a SPF value. Its tradenames include Eusolex 6300 (Merck) and Parsol 5000 (DSM).

Organic photochemistry encompasses organic reactions that are induced by the action of light. The absorption of ultraviolet light by organic molecules often leads to reactions. In the earliest days, sunlight was employed, while in more modern times ultraviolet lamps are employed. Organic photochemistry has proven to be a very useful synthetic tool. Complex organic products can be obtained simply.

Photochemical & Photobiological Sciences is a monthly peer-reviewed scientific journal covering all areas of photochemistry and photobiology. It was established in 2002 and is published by Springer Science+Business Media on behalf of the European Photochemistry Association and the European Society for Photobiology. The editors-in-chief are Dario Bassani and Rex Tyrrell.

The McLafferty rearrangement is a reaction observed in mass spectrometry during the fragmentation or dissociation of organic molecules. It is sometimes found that a molecule containing a keto-group undergoes β-cleavage, with the gain of the γ-hydrogen atom, as first reported by Anthony Nicholson working in the Division of Chemical Physics at the CSIRO in Australia. This rearrangement may take place by a radical or ionic mechanism.

<span class="mw-page-title-main">Krypton difluoride</span> Chemical compound

Krypton difluoride, KrF2 is a chemical compound of krypton and fluorine. It was the first compound of krypton discovered. It is a volatile, colourless solid at room temperature. The structure of the KrF2 molecule is linear, with Kr−F distances of 188.9 pm. It reacts with strong Lewis acids to form salts of the KrF+ and Kr
2
F+
3
cations.

<span class="mw-page-title-main">Wender Taxol total synthesis</span>

Wender Taxol total synthesis in organic chemistry describes a Taxol total synthesis by the group of Paul Wender at Stanford University published in 1997. This synthesis has much in common with the Holton Taxol total synthesis in that it is a linear synthesis starting from a naturally occurring compound with ring construction in the order A,B,C,D. The Wender effort is shorter by approximately 10 steps.

<span class="mw-page-title-main">Levoverbenone</span> Chemical compound

Levoverbenone is an expectorant. It is the L-isomer of verbenone.

Non-photochemical quenching (NPQ) is a mechanism employed by plants and algae to protect themselves from the adverse effects of high light intensity. It involves the quenching of singlet excited state chlorophylls (Chl) via enhanced internal conversion to the ground state, thus harmlessly dissipating excess excitation energy as heat through molecular vibrations. NPQ occurs in almost all photosynthetic eukaryotes, and helps to regulate and protect photosynthesis in environments where light energy absorption exceeds the capacity for light utilization in photosynthesis.

The molecular formula C10H14O (molar mass: 150.22 g/mol, exact mass: 150.104465 u) can refer to:

Photoelectrochemical processes are processes in photoelectrochemistry; they usually involve transforming light into other forms of energy. These processes apply to photochemistry, optically pumped lasers, sensitized solar cells, luminescence, and photochromism.

In organic chemistry, enone–alkene cycloadditions are a version of the [2+2] cycloaddition This reaction involves an enone and alkene as substrates. Although the concerted photochemical [2+2] cycloaddition is allowed, the reaction between enones and alkenes is stepwise and involves discrete diradical intermediates.

<span class="mw-page-title-main">Chlorophyll fluorescence</span> Light re-emitted by chlorophyll molecules during return from excited to non-excited states

Chlorophyll fluorescence is light re-emitted by chlorophyll molecules during return from excited to non-excited states. It is used as an indicator of photosynthetic energy conversion in plants, algae and bacteria. Excited chlorophyll dissipates the absorbed light energy by driving photosynthesis, as heat in non-photochemical quenching or by emission as fluorescence radiation. As these processes are complementary processes, the analysis of chlorophyll fluorescence is an important tool in plant research with a wide spectrum of applications.

<span class="mw-page-title-main">Jeewanu</span>

Jeewanu are synthetic chemical particles that possess cell-like structure and seem to have some functional properties; that is, they are a model of primitive cells, or protocells. It was first synthesised by Krishna Bahadur, an Indian chemist and his team in 1963. Using photochemical reaction, they produced coacervates, microscopic cell-like spheres from a mixture of simple organic and inorganic compounds. Bahadur named these particles 'Jeewanu' because they exhibit some of the basic properties of a cell, such as the presence of semipermeable membrane, amino acids, phospholipids and carbohydrates. Further, like living cells, they had several catalytic activities. Jeewanu are cited as models of protocells for the origin of life, and as artificial cells.

In organic chemistry, Baird's rule estimates whether the lowest triplet state of planar, cyclic structures will have aromatic properties or not. The quantum mechanical basis for its formulation was first worked out by physical chemist N. Colin Baird at the University of Western Ontario in 1972.

References

  1. Erman, William F. (1967). "Photochemical transformations of unsaturated bicyclic ketones. Verbenone and its photodynamic products of ultraviolet irradiation". Journal of the American Chemical Society. 89 (15): 3828. doi:10.1021/ja00991a026.