Churchill Craton

Last updated
Paleomap of North American and Scandinavian cratons and orogenic belts. The Churchill Craton comprises the Rae and Hearne provinces (both in magenta). North america basement rocks.png
Paleomap of North American and Scandinavian cratons and orogenic belts. The Churchill Craton comprises the Rae and Hearne provinces (both in magenta).

The Churchill Craton is the northwest section of the Canadian Shield and stretches from southern Saskatchewan and Alberta to northern Nunavut. It has a very complex geological history punctuated by at least seven distinct regional tectono metamorphic intervals, including many discrete accretionary magmatic events. The Western Churchill province is the part of the Churchill Craton that is exposed north and west of the Hudson Bay. The Archean (ca. 1.83 Ga) Western Churchill province contributes to the complicated and protracted tectonic history of the craton and marks a major change in the behaviour of the Churchill Craton with many remnants of Archean supracrustal and granitoid rocks.

Contents

Major tectonometamorphic intervals

[1]

Hearne Domain, Western Churchill province

A north-northwest-trending crustal segment transects from Kaminak Lake (central Hearne Domain) in the south to Yathkyed Lake (northern Hearne Domain) in the northwest, consisting of Archean supracrustal belts that preserve mostly Archean mafic to felsic volcanic rocks (greenschist-grade supracrustal and granitoids), metamorphic cooling of hornblende and Proterozoic biotite.

This section of the Churchill province was formerly called the Ennadai-Rankin greenstone belt and include the Kaminak, Yathkyed, MacQuoid and Rankin supracrustal belts, containing a wide range of intrusive Neoarchean plutonic rocks ranging in composition from gabbro to syenogranite. The Kaminak supracrustal belt preserves igneous textures including interlocking quartz and plagioclase that are intergrown with platy biotite (2.084-1.914 Ga) and stubby euhedral grains of prismatic titanite and hornblende. The Yathkyed belt contains a range of hornblende cooling (2.63-246 Ga) amphibolitic metamorphic rocks. The Kaminak and Yathkyed belts are overlain by the Proterozoic (2.45 Ga) Hurwitz Group. Deformation of the Hurwitz Group occurred after the 2.11 Ga intrusion of gabbro sills, but prior to the intrusion of the 1.83 Ga lamprophyre dykes associated with the ultrapotassic lavas of the nearby Baker Lake Basin. Parallel to the Paleoproterozoic Hurwitz Group is massive veins of green biotite that are interpreted to have been emplaced there by a hydrothermal event accompanying a deformation along this contact area. [2]

Murmac Bay Group, Western Churchill province

The Murmac Bay Group exposed in the southwestern half of the Western Churchill Craton, near Uranium City, Saskatchewan consists of a mixed package of Precambrian volcanic and sedimentary rocks These rocks sit on ca. 3 Ga granitoids and have been affected by several deformational and metamorphic events.

Taltson Magmatic Zone and Taltson basement

The Taltson Magmatic Zone (south of 60°N) is a composite continental magmatic arc and collisional orogen resulting from the convergence of the Buffalo Head terrane with the Archean Churchill craton. The Taltson basement (ca. 3.2–3.0 Ga and 2.4–2.14 Ga) and Rutledge River supracrustal gneisses (2.13–2.09 Ga) were intruded by voluminous I- and S-type magmatic rocks between 1.99 and 1.92 Ga.

Economic geology

There is aggressive diamond exploration drilling in the south Slave Province, NWT, Churchill Craton (at the northwest corner of the Hudson Bay) and in Ontario. The Northwest Territories (NWT), North Slave craton and Keewatin regions of Nunavut and the north-central region of Alberta are regions that are all underlain by diamond-friendly cratonic rocks of the Slave Craton, Churchill Craton and the Buffalo Head Craton. The diamonds being found in the NWT were created 50 to 600 mya during cataclysmic explosions of kimberlite, a molten magma originating up to 400 kilometers beneath the Earth's surface.

Unlike the Slave Craton, which is covered with shallow lakes and swamp, the eastern part of the Churchill Craton is drier. Kimberlites may be obscured by foliage rather than water, therefore many targets may be drillable during the summer, not just during the short winter window when lakes are frozen and daylight is available. In comparison, drilling in the Eastern Arctic is too remote compared to the Slave Craton, which is serviced by the fully developed infrastructure of Yellowknife. The Eastern Arctic is serviced by the smaller town of Rankin Inlet, which in turn is serviced by barge during summer.

See also

Related Research Articles

<span class="mw-page-title-main">Ungava Peninsula</span> Region in Nunavik, Quebec

The Ungava Peninsula, officially Péninsule d'Ungava, is the far northwestern part of the Labrador Peninsula of the province of Quebec, Canada. Bounded by Hudson Bay to the west, Hudson Strait to the north, and Ungava Bay to the east, it covers about 252,000 km2 (97,000 sq mi). Its northernmost point is Cape Wolstenholme, which is also the northernmost point of Quebec. The peninsula is also part of the Canadian Shield, and consists entirely of treeless tundra dissected by large numbers of rivers and glacial lakes, flowing generally east–west in a parallel fashion. The peninsula was not deglaciated until 6,500 years ago and is believed to have been the prehistoric centre from which the vast Laurentide Ice Sheet spread over most of North America during the last glacial epoch.

<span class="mw-page-title-main">Slave Craton</span> Area of ancient rocks in northwest Canada

The Slave Craton is an Archaean craton in the north-western Canadian Shield, in Northwest Territories and Nunavut. The Slave Craton includes the 4.03 Ga-old Acasta Gneiss which is one of the oldest dated rocks on Earth. Covering about 300,000 km2 (120,000 sq mi), it is a relatively small but well-exposed craton dominated by ~2.73–2.63 Ga greenstones and turbidite sequences and ~2.72–2.58 Ga plutonic rocks, with large parts of the craton underlain by older gneiss and granitoid units. The Slave Craton is one of the blocks that compose the Precambrian core of North America, also known as the palaeocontinent Laurentia.

<span class="mw-page-title-main">Kaapvaal Craton</span> Archaean craton, possibly part of the Vaalbara supercontinent

The Kaapvaal Craton, along with the Pilbara Craton of Western Australia, are the only remaining areas of pristine 3.6–2.5 Ga crust on Earth. Similarities of rock records from both these cratons, especially of the overlying late Archean sequences, suggest that they were once part of the Vaalbara supercontinent.

<span class="mw-page-title-main">Limpopo Belt</span>

The Limpopo Belt is located in South Africa and Zimbabwe, runs E-NE, and joins the Kaapvaal Craton to the south with the Zimbabwe Craton to the north. The belt is of high-grade metamorphic rocks that have undergone a long cycle of metamorphism and deformation that ended 2.0 billion years ago, after the stabilisation of the adjacent massifs. The belt comprises 3 components: the Central Zone, the North Marginal Zone and the South Marginal Zone.

<span class="mw-page-title-main">Trans-Hudson orogeny</span> Mountain-building event in North America

The Trans-Hudson orogeny or Trans-Hudsonian orogeny was the major mountain building event (orogeny) that formed the Precambrian Canadian Shield and the North American Craton, forging the initial North American continent. It gave rise to the Trans-Hudson orogen (THO), or Trans-Hudson Orogen Transect (THOT), which is the largest Paleoproterozoic orogenic belt in the world. It consists of a network of belts that were formed by Proterozoic crustal accretion and the collision of pre-existing Archean continents. The event occurred 2.0–1.8 billion years ago.

<span class="mw-page-title-main">Wyoming Craton</span> Craton in the west-central United States and western Canada

The Wyoming Craton is a craton in the west-central United States and western Canada – more specifically, in Montana, Wyoming, southern Alberta, southern Saskatchewan, and parts of northern Utah. Also called the Wyoming Province, it is the initial core of the continental crust of North America.

<span class="mw-page-title-main">Labrador Trough</span>

The Labrador Trough or the New Quebec Orogen is a 1,600 km (994 mi) long and 160 km (99 mi) wide geologic belt in Canada, extending south-southeast from Ungava Bay through Quebec and Labrador.

<span class="mw-page-title-main">Taltson Magmatic Zone</span> Belt of Archean to Paleoproterozoic rock in the Canadian Shield

The Taltson Magmatic Zone (TMZ) is a north-trending belt of Archean to Paleoproterozoic granitic basement gneiss, amphibolite supracrustal gneissic rock and Paleoproterozoic magmatic rocks in the Canadian Shield, extending from Northern Alberta to the southwestern Northwest Territories. The TMZ basement is 3.2–3.0 Ga and the Rutledge River supracrustal gneisses 2.13–2.09 Ga years old and were intruded by magmatic rocks around 1.99–1.92 Ga.

<span class="mw-page-title-main">Algoman orogeny</span> Late Archaean episode of mountain building in what is now North America

The Algoman orogeny, known as the Kenoran orogeny in Canada, was an episode of mountain-building (orogeny) during the Late Archean Eon that involved repeated episodes of continental collisions, compressions and subductions. The Superior province and the Minnesota River Valley terrane collided about 2,700 to 2,500 million years ago. The collision folded the Earth's crust and produced enough heat and pressure to metamorphose the rock. Blocks were added to the Superior province along a 1,200 km (750 mi) boundary that stretches from present-day eastern South Dakota into the Lake Huron area. The Algoman orogeny brought the Archean Eon to a close, about 2,500 million years ago; it lasted less than 100 million years and marks a major change in the development of the Earth's crust.

<span class="mw-page-title-main">Geology of Zimbabwe</span>

The geology of Zimbabwe in southern Africa is centered on the Zimbabwe Craton, a core of Archean basement composed in the main of granitoids, schist and gneisses. It also incorporates greenstone belts comprising mafic, ultramafic and felsic volcanics which are associated with epiclastic sediments and iron formations. The craton is overlain in the north, northwest and east by Proterozoic and Phanerozoic sedimentary basins whilst to the northwest are the rocks of the Magondi Supergroup. Northwards is the Zambezi Belt and to the east the Mozambique Belt. South of the Zimbabwe Craton is the Kaapvaal Craton separated from it by the Limpopo Mobile Belt, a zone of deformation and metamorphism reflecting geological events from Archean to Mesoproterozoic times. The Zimbabwe Craton is intruded by an elongate ultramafic/mafic igneous complex known as the Great Dyke which runs for more than 500 km along a SSW/NNE oriented graben. It consists of peridotites, pyroxenites, norites and bands of chromitite.

<span class="mw-page-title-main">Hearne Craton</span> Craton in northern Canada

The Hearne Craton is a craton in northern Canada which, together with the Rae Craton, forms the Western Churchill Province. Hearne is one of the six Archaean cratons of the Canadian Shield that are bound together by Palaeoproterozoic orogenic belts. Before being merged these six cratons formed independent microcontinents.

<span class="mw-page-title-main">Huangling Anticline</span>

The Huangling Anticline or Complex represents a group of rock units that appear in the middle of the Yangtze Block in South China, distributed across Yixingshan, Zigui, Huangling, and Yichang counties. The group of rock involves nonconformity that sedimentary rocks overlie the metamorphic basement. It is a 73-km long, asymmetrical dome-shaped anticline with axial plane orientating in the north-south direction. It has a steeper west flank and a gentler east flank. Basically, there are three tectonic units from the anticline core to the rim, including Archean to Paleoproterozoic metamorphic basement, Neoproterozoic to Jurassic sedimentary rocks, and Cretaceous fluvial deposit sedimentary cover. The northern part of the core is mainly tonalite-trondhjemite-gneiss (TTG) and Cretaceous sedimentary rock called the Archean Kongling Complex. The middle of the core is mainly the Neoproterozoic granitoid. The southern part of the core is the Neoproterozoic potassium granite. Two basins are situated on the western and eastern flanks of the core, respectively, including the Zigui basin and Dangyang basin. Both basins are synforms while Zigui basin has a larger extent of folding. Yuanan Graben and Jingmen Graben are found within the Dangyang Basin area. The Huangling Anticline is an important area that helps unravel the tectonic history of the South China Craton because it has well-exposed layers of rock units from Archean basement rock to Cretaceous sedimentary rock cover due to the erosion of the anticline.

<span class="mw-page-title-main">Eoarchean geology</span> Study of the oldest crustal fragments on Earth

Eoarchean geology is the study of the oldest preserved crustal fragments of Earth during the Eoarchean era from 4.031 to 3.6 billion years ago. Major well-preserved rock units dated Eoarchean are known from three localities, the Isua Greenstone Belt in Southwest Greenland, the Acasta Gneiss in the Slave Craton in Canada, and the Nuvvuagittuq Greenstone Belt in the eastern coast of Hudson Bay in Quebec. From the dating of rocks in these three regions scientists suggest that plate tectonics could go back as early as Eoarchean.

<span class="mw-page-title-main">Geology of Sierra Leone</span> Geology of Sieraa Leone, an African nation

The geology of Sierra Leone is primarily very ancient Precambrian Archean and Proterozoic crystalline igneous and metamorphic basement rock, in many cases more than 2.5 billion years old. Throughout Earth history, Sierra Leone was impacted by major tectonic and climatic events, such as the Leonean, Liberian and Pan-African orogeny mountain building events, the Neoproterozoic Snowball Earth and millions of years of weathering, which has produced thick layers of regolith across much of the country's surface.

The geology of Nunavut began to form nearly three billion years ago in the Archean and the territory preserves some of the world's oldest rock units.

The geology of Quebec involves several different geologic provinces, made up of ancient Precambrian crystalline igneous and metamorphic rock, overlain by younger sedimentary rocks and soils. Most of southern Quebec is dominated by the Grenville Province, while the vast north is divided between the large Superior Province and the Churchill Province to the east, near Labrador.

The geology of the Northwest Territories has been mapped in different quadrangles by the Canadian government. The region has some of the oldest rocks in the world and among the oldest in North America, formed from several sections of stable craton continental crust, including the Slave Craton, Rae Craton and Hearne Craton. These rocks form the Archean and Proterozoic Precambrian basement rock of the region and are the subject of extensive research to understand continental crust and tectonic conditions on the early Earth.

<span class="mw-page-title-main">Eastern Block of the North China Craton</span>

The Eastern Block of the North China Craton is one of the Earth's oldest pieces of continent. It is separated from the Western Block by the Trans-North China Orogen. It is situated in northeastern China and North Korea. The Block contains rock exposures older than 2.5 billion years. It serves as an ideal place to study how the crust was formed in the past and the related tectonic settings.

The Superior Craton is a stable crustal block covering Quebec, Ontario, and southeast Manitoba in Canada, and northern Minnesota in the United States. It is the biggest craton among those formed during the Archean period. A craton is a large part of the Earth's crust that has been stable and subjected to very little geological changes over a long time. The size of Superior Craton is about 1,572,000 km2. The craton underwent a series of events from 4.3 to 2.57 Ga. These events included the growth, drifting and deformation of both oceanic and continental crusts.

<span class="mw-page-title-main">Dharwar Craton</span> Part of the Indian Shield in south India

The Dharwar Craton is an Archean continental crust craton formed between 3.6-2.5 billion years ago (Ga), which is located in southern India and considered as the oldest part of the Indian peninsula.

References

Notes

  1. Sandeman 2001 , pp. 3–4
  2. Sandeman 2001 , pp. 4–5

Sources

  • Sandeman, H. A. (2001). "40Ar-39Ar Geochronological Investigations of the Central Hearne Domain, Western Churchill Province, Nunavut: A Progress Report" (PDF). Geological Survey of Canada, Current Research. 2001-F4. Retrieved 28 May 2016.