Classful network

Last updated
Map of the prototype Internet in 1982, showing 8-bit-numbered networks (ovals) only, interconnected by routers (rectangles). Internet map in February 82.png
Map of the prototype Internet in 1982, showing 8-bit-numbered networks (ovals) only, interconnected by routers (rectangles).

A classful network is an obsolete network addressing architecture used in the Internet from 1981 until the introduction of Classless Inter-Domain Routing (CIDR) in 1993. The method divides the IP address space for Internet Protocol version 4 (IPv4) into five address classes based on the leading four address bits. Classes A, B, and C provide unicast addresses for networks of three different network sizes. Class D is for multicast networking and the class E address range is reserved for future or experimental purposes.

Contents

Since its discontinuation, remnants of classful network concepts have remained in practice only in limited scope in the default configuration parameters of some network software and hardware components, most notably in the default configuration of subnet masks.

Background

In the original address definition, the most significant eight bits of the 32-bit IPv4 address was the network number field which specified the particular network a host was attached to. The remaining 24 bits specified the local address, also called rest field (the rest of the address), which uniquely identified a host connected to that network. [1] This format was sufficient at a time when only a few large networks existed, such as the ARPANET (network number 10), and before the wide proliferation of local area networks (LANs). As a consequence of this architecture, the address space supported only a low number (254) of independent networks.

Before the introduction of address classes, the only address blocks available were these large blocks which later became known as Class A networks. [2] As a result, some organizations involved in the early development of the Internet received address space allocations far larger than they would ever need (16,777,216 IP addresses each). It became clear early in the growth of the network that this would be a critical scalability limitation.[ citation needed ]

Introduction of address classes

Expansion of the network had to ensure compatibility with the existing address space and the IPv4 packet structure, and avoid the renumbering of the existing networks. The solution was to expand the definition of the network number field to include more bits, allowing more networks to be designated, each potentially having fewer hosts. Since all existing network numbers at the time were smaller than 64, they had only used the 6 least-significant bits of the network number field. Thus it was possible to use the most-significant bits of an address to introduce a set of address classes while preserving the existing network numbers in the first of these classes.

The new addressing architecture was introduced by RFC   791 in 1981 as a part of the specification of the Internet Protocol. [3] It divided the address space into primarily three address formats, henceforth called address classes, and left a fourth range reserved to be defined later.

The first class, designated as Class A, contained all addresses in which the most significant bit is zero. The network number for this class is given by the next 7 bits, therefore accommodating 128 networks in total, including the zero network, and including the IP networks already allocated. A Class B network was a network in which all addresses had the two most-significant bits set to 1 and 0 respectively. For these networks, the network address was given by the next 14 bits of the address, thus leaving 16 bits for numbering host on the network for a total of 65536 addresses per network. Class C was defined with the 3 high-order bits set to 1, 1, and 0, and designating the next 21 bits to number the networks, leaving each network with 256 local addresses.

The leading bit sequence 111 designated an at-the-time unspecified addressing mode ("escape to extended addressing mode"), [3] which was later subdivided as Class D (1110) for multicast addressing, while leaving as reserved for future use the 1111 block designated as Class E. [4]

This architecture change extended the addressing capacity of the Internet but did not prevent IP address exhaustion. The problem was that many sites needed larger address blocks than a Class C network provided, and therefore they received a Class B block, which was in most cases much larger than required. Due to the rapid growth of the Internet, the pool of unassigned Class B addresses (214, or about 16,000) was rapidly being depleted. Starting in 1993, classful networking was replaced by Classless Inter-Domain Routing (CIDR), [5] [6] in an attempt to solve this problem.

Classful addressing definition

Under classful network addressing, the 32-bit IPv4 address space was partitioned into five classes (A-E) as shown in the following tables.

Classes
ClassLeading bitsSize of network number bit fieldSize of rest bit fieldNumber of networksAddresses per networkTotal addresses in classStart addressEnd addressDefault subnet mask in dot-decimal notation CIDR notation
Class A0824128 (27)16,777,216 (224)2,147,483,648 (231)0.0.0.0127.255.255.255 [lower-alpha 1] 255.0.0.0/8
Class B10161616,384 (214)65,536 (216)1,073,741,824 (230)128.0.0.0191.255.255.255255.255.0.0/16
Class C1102482,097,152 (221)256 (28)536,870,912 (229)192.0.0.0223.255.255.255255.255.255.0/24
Class D (multicast)1110not definednot definednot definednot defined268,435,456 (228)224.0.0.0239.255.255.255not defined/4 [7]
Class E (reserved)1111not definednot definednot definednot defined268,435,456 (228)240.0.0.0255.255.255.255 [lower-alpha 2] not definednot defined
Bit-wise representation

In the following bit-wise representation,

Class A   0.  0.  0.  0 = 00000000.00000000.00000000.00000000 127.255.255.255 = 01111111.11111111.11111111.11111111                   0nnnnnnn.HHHHHHHH.HHHHHHHH.HHHHHHHH  Class B 128.  0.  0.  0 = 10000000.00000000.00000000.00000000 191.255.255.255 = 10111111.11111111.11111111.11111111                   10nnnnnn.nnnnnnnn.HHHHHHHH.HHHHHHHH  Class C 192.  0.  0.  0 = 11000000.00000000.00000000.00000000 223.255.255.255 = 11011111.11111111.11111111.11111111                   110nnnnn.nnnnnnnn.nnnnnnnn.HHHHHHHH  Class D 224.  0.  0.  0 = 11100000.00000000.00000000.00000000 239.255.255.255 = 11101111.11111111.11111111.11111111                   1110XXXX.XXXXXXXX.XXXXXXXX.XXXXXXXX  Class E 240.  0.  0.  0 = 11110000.00000000.00000000.00000000 255.255.255.255 = 11111111.11111111.11111111.11111111                   1111XXXX.XXXXXXXX.XXXXXXXX.XXXXXXXX 

The number of addresses usable for addressing specific hosts in each network is always 2N - 2, where N is the number of rest field bits, and the subtraction of 2 adjusts for the use of the all-bits-zero host value to represent the network address and the all-bits-one host value for use as a broadcast address. Thus, for a Class C address with 8 bits available in the host field, the maximum number of hosts is 254.

Today, IP addresses are associated with a subnet mask. This was not required in a classful network because the mask was implied by the address itself; any network device would inspect the first few bits of the IP address to determine the class of the address and thus its netmask.

The blocks numerically at the start and end of classes A, B and C were originally reserved for special addressing or future features, i.e., 0.0.0.0/8 and 127.0.0.0/8 are reserved in former class A; 128.0.0.0/16 and 191.255.0.0/16 were reserved in former class B but are now available for assignment; 192.0.0.0/24 and 223.255.255.0/24 are reserved in former class C. While the 127.0.0.0/8 network is a Class A network, it is designated for loopback and cannot be assigned to a network. [8]

Class D is reserved for multicast and cannot be used for regular unicast traffic. Class E is reserved and cannot be used on the public Internet. Many older routers will not accept using it in any context.[ citation needed ]

See also

Notes

  1. 127.0.0.0 through 127.255.255.255 are reserved for loopback addresses. Although reserved, they are still part of the class A address group.
  2. 255.255.255.255 is reserved as the IPv4 broadcast address.

Related Research Articles

An Internet Protocol address is a numerical label such as 192.0.2.1 that is assigned to a device connected to a computer network that uses the Internet Protocol for communication. IP addresses serve two main functions: network interface identification, and location addressing.

<span class="mw-page-title-main">Internet Protocol version 4</span> Fourth version of the Internet Protocol

Internet Protocol version 4 (IPv4) is the fourth version of the Internet Protocol (IP). It is one of the core protocols of standards-based internetworking methods in the Internet and other packet-switched networks. IPv4 was the first version deployed for production on SATNET in 1982 and on the ARPANET in January 1983. It is still used to route most Internet traffic today, even with the ongoing deployment of Internet Protocol version 6 (IPv6), its successor.

<span class="mw-page-title-main">IPv6</span> Version 6 of the Internet Protocol

Internet Protocol version 6 (IPv6) is the most recent version of the Internet Protocol (IP), the communications protocol that provides an identification and location system for computers on networks and routes traffic across the Internet. IPv6 was developed by the Internet Engineering Task Force (IETF) to deal with the long-anticipated problem of IPv4 address exhaustion, and was intended to replace IPv4. In December 1998, IPv6 became a Draft Standard for the IETF, which subsequently ratified it as an Internet Standard on 14 July 2017.

The Internet Protocol (IP) is the network layer communications protocol in the Internet protocol suite for relaying datagrams across network boundaries. Its routing function enables internetworking, and essentially establishes the Internet.

In computer networking, the User Datagram Protocol (UDP) is one of the core communication protocols of the Internet protocol suite used to send messages to other hosts on an Internet Protocol (IP) network. Within an IP network, UDP does not require prior communication to set up communication channels or data paths.

Classless Inter-Domain Routing is a method for allocating IP addresses for IP routing. The Internet Engineering Task Force introduced CIDR in 1993 to replace the previous classful network addressing architecture on the Internet. Its goal was to slow the growth of routing tables on routers across the Internet, and to help slow the rapid exhaustion of IPv4 addresses.

A multicast address is a logical identifier for a group of hosts in a computer network that are available to process datagrams or frames intended to be multicast for a designated network service. Multicast addressing can be used in the link layer, such as Ethernet multicast, and at the internet layer for Internet Protocol Version 4 (IPv4) or Version 6 (IPv6) multicast.

In computing, Internet Protocol Security (IPsec) is a secure network protocol suite that authenticates and encrypts packets of data to provide secure encrypted communication between two computers over an Internet Protocol network. It is used in virtual private networks (VPNs).

The Routing Information Protocol (RIP) is one of the oldest distance-vector routing protocols which employs the hop count as a routing metric. RIP prevents routing loops by implementing a limit on the number of hops allowed in a path from source to destination. The largest number of hops allowed for RIP is 15, which limits the size of networks that RIP can support.

<span class="mw-page-title-main">Subnet</span> Logical subdivision of an IP network

A subnetwork, or subnet, is a logical subdivision of an IP network. The practice of dividing a network into two or more networks is called subnetting.

The Internet Group Management Protocol (IGMP) is a communications protocol used by hosts and adjacent routers on IPv4 networks to establish multicast group memberships. IGMP is an integral part of IP multicast and allows the network to direct multicast transmissions only to hosts that have requested them.

A broadcast address is a network address used to transmit to all devices connected to a multiple-access communications network. A message sent to a broadcast address may be received by all network-attached hosts.

In computer networking, localhost is a hostname that refers to the current computer used to access it. The name localhost is reserved for loopback purposes. It is used to access the network services that are running on the host via the loopback network interface. Using the loopback interface bypasses any local network interface hardware.

In Internet networking, a private network is a computer network that uses a private address space of IP addresses. These addresses are commonly used for local area networks (LANs) in residential, office, and enterprise environments. Both the IPv4 and the IPv6 specifications define private IP address ranges.

In the Internet addressing architecture, the Internet Engineering Task Force (IETF) and the Internet Assigned Numbers Authority (IANA) have reserved various Internet Protocol (IP) addresses for special purposes.

Internet Control Message Protocol version 6 (ICMPv6) is the implementation of the Internet Control Message Protocol (ICMP) for Internet Protocol version 6 (IPv6). ICMPv6 is an integral part of IPv6 and performs error reporting and diagnostic functions.

In computer networking, a link-local address is a network address that is valid only for communications on a local link, i.e. within a subnetwork that a host is connected to. Link-local addresses are most often unicast network addresses assigned automatically through a process known as stateless address autoconfiguration (SLAAC) or link-local address autoconfiguration, also known as automatic private IP addressing (APIPA) or auto-IP. Link-local addresses are not all unicast; e.g. IPv6 addresses beginning with ff02:, and IPv4 addresses beginning with 224.0.0. are multicast addresses that are link-local.

The internet layer is a group of internetworking methods, protocols, and specifications in the Internet protocol suite that are used to transport network packets from the originating host across network boundaries; if necessary, to the destination host specified by an IP address. The internet layer derives its name from its function facilitating internetworking, which is the concept of connecting multiple networks with each other through gateways.

<span class="mw-page-title-main">IPv6 address</span> Label to identify a network interface of a computer or other network node

An Internet Protocol version 6 address is a numeric label that is used to identify and locate a network interface of a computer or a network node participating in a computer network using IPv6. IP addresses are included in the packet header to indicate the source and the destination of each packet. The IP address of the destination is used to make decisions about routing IP packets to other networks.

References

  1. J. Postel, ed. (January 1980). INTERNET PROTOCOL - DARPA INTERNET PROGRAM PROTOCOL SPECIFICATION. IETF. doi: 10.17487/RFC0760 . RFC 760.IEN 128.Obsolete. sec. 3.1. Obsoleted by RFC  791. Replaces IEN 123, 111, 80, 54, 44, 41, 28 and 26. Updated by RFC   777.
  2. Clark, David D. (June 1978). A proposal for addressing and routing in the Internet. IETF. IEN 46. Retrieved 2014-01-08.
  3. 1 2 J. Postel, ed. (September 1981). INTERNET PROTOCOL - DARPA INTERNET PROGRAM PROTOCOL SPECIFICATION. IETF. doi: 10.17487/RFC0791 . STD 5. RFC 791.IEN 128, 123, 111, 80, 54, 44, 41, 28, 26.Internet Standard 5. Obsoletes RFC  760. Updated by RFC  1349, 2474 and 6864.
  4. S.E. Deering (July 1986). Host Extensions for IP Multicasting. Network Working Group. doi: 10.17487/RFC0988 . RFC 988.Obsolete. Obsoleted by RFC  1054 and 1112.
  5. Y. Rekhter; T. Li, eds. (September 1993). An Architecture for IP Address Allocation with CIDR. Network Working Group. doi: 10.17487/RFC1518 . RFC 1518.Historic.
  6. V. Fuller; T. Li; J. Yu; K. Varadhan (September 1993). Classless Inter-Domain Routing (CIDR): an Address Assignment and Aggregation Strategy. Network Working Group. doi: 10.17487/RFC1519 . RFC 1519.Obsolete. Obsoleted by RFC  4632. Obsoletes RFC  1338.
  7. MULTICAST_IP_ADDR. General Electric Digital Solutions. CIMPLICITY 10.0. In network prefix or Classless Inter-Domain Routing ( CIDR) notation, IP multicast addresses are summarized as 224.0.0.0/4.
  8. M. Cotton; L. Vegoda (January 2010). Special Use IPv4 Addresses. RFC   5735 .