Coenzyme F420

Last updated
Structure of Coenzyme F420 F420.svg
Structure of Coenzyme F420

Coenzyme F420 is a family of coenzymes involved in redox reactions in a number of bacteria and archaea. It is derived from coenzyme FO (7,8-didemethyl-8-hydroxy-5-deazariboflavin) and differs by having a oligoglutamyl tail attached via a 2-phospho-L-lactate bridge. F420 is so named because it is a flavin derivative with an absorption maximum at 420 nm.

Contents

F420 was originally discovered in methanogenic archaea [1] and in Actinomycetota (especially in Mycobacterium ). [2] It is now known to be used also by Cyanobacteria and by soil Proteobacteria, Chloroflexi and Firmicutes. [3] Eukaryotes including the fruit fly Drosophila melanogaster and the algae Ostreococcus tauri also use Coenzyme FO. [4]

F420 is structurally similar to FMN, but catalytically it is similar to NAD and NADP: it has low redox potential and always transfer a hydride. As a result, it is not only a versatile cofactor in biochemical reactions, but also being eyed for potential as an industrial catalyst. Similar to FMN, it has two states: one reduced state, notated as F420-H2, and one oxidized state, written as just F420. [5] FO has largely similar redox properties, but cannot carry an electric charge and as a result probably slowly leaks out of the cellular membrane. [3]

A number of F420 molecules, differing by the length of the oligoglutamyl tail, are possible; F420-2, for example, refers to the version with two glutamyl units attached. Lengths from 4 to 9 are typical. [3]

Biosynthesis

Coenzyme F420 is synthesized via a multi-step pathway:

Oxidized F420 can be converted to reduced F420-H2 by multiple enzymes such as Glucose-6-phosphate dehydrogenase (coenzyme-F420) (Fgd1). [5]

Function

The coenzyme is a substrate for coenzyme F420 hydrogenase, [6] 5,10-methylenetetrahydromethanopterin reductase and methylenetetrahydromethanopterin dehydrogenase. [7] [8]

A long list of other enzymes use F420 to oxidize (dehydrogenate) or F420-H2 to reduce substrates. [5]

Clinical relevance

Delamanid, a drug used to treat multi-drug-resistant tuberculosis (MDRTB) in combination with other antituberculosis medications, is activated in the mycobacterium by deazaflavin-dependent nitroreductase (Ddn), an enzyme which uses dihydro-F420 (reduced form). The activated form of the drug is highly reactive and attacks cell wall synthesis enzymes such as DprE2. Pretomanid works in the same way. Clinical isolates resistant to these two drugs tend to have mutations in the biosynthetic pathway for F420. [9]

See also

Related Research Articles

<span class="mw-page-title-main">Flavin group</span> Group of chemical compounds

Flavins refers generally to the class of organic compounds containing the tricyclic heterocycle isoalloxazine or its isomer alloxazine, and derivatives thereof. The biochemical source of flavin is the yellow B vitamin riboflavin. The flavin moiety is often attached with an adenosine diphosphate to form flavin adenine dinucleotide (FAD), and, in other circumstances, is found as flavin mononucleotide, a phosphorylated form of riboflavin. It is in one or the other of these forms that flavin is present as a prosthetic group in flavoproteins. Despite the similar names, flavins are chemically and biologically distinct from the flavanoids, and the flavonols.

Methanogens are microorganisms that produce methane as a metabolic byproduct in hypoxic conditions. They belong to the domain Archaea and are members of the phylum Euryarchaeota. Methanogens are common in wetlands, where they are responsible for marsh gas, and can occur in the digestive tracts of animals including ruminants and humans, where they are responsible for the methane content of belching and flatulence. In marine sediments, the biological production of methane, termed methanogenesis, is generally confined to where sulfates are depleted below the top layers and methanogens play an indispensable role in anaerobic wastewater treatments. Other methanogens are extremophiles, found in environments such as hot springs and submarine hydrothermal vents as well as in the "solid" rock of Earth's crust, kilometers below the surface.

<span class="mw-page-title-main">Flavin adenine dinucleotide</span> Redox-active coenzyme

In biochemistry, flavin adenine dinucleotide (FAD) is a redox-active coenzyme associated with various proteins, which is involved with several enzymatic reactions in metabolism. A flavoprotein is a protein that contains a flavin group, which may be in the form of FAD or flavin mononucleotide (FMN). Many flavoproteins are known: components of the succinate dehydrogenase complex, α-ketoglutarate dehydrogenase, and a component of the pyruvate dehydrogenase complex.

Iron–sulfur proteins are proteins characterized by the presence of iron–sulfur clusters containing sulfide-linked di-, tri-, and tetrairon centers in variable oxidation states. Iron–sulfur clusters are found in a variety of metalloproteins, such as the ferredoxins, as well as NADH dehydrogenase, hydrogenases, coenzyme Q – cytochrome c reductase, succinate – coenzyme Q reductase and nitrogenase. Iron–sulfur clusters are best known for their role in the oxidation-reduction reactions of electron transport in mitochondria and chloroplasts. Both Complex I and Complex II of oxidative phosphorylation have multiple Fe–S clusters. They have many other functions including catalysis as illustrated by aconitase, generation of radicals as illustrated by SAM-dependent enzymes, and as sulfur donors in the biosynthesis of lipoic acid and biotin. Additionally, some Fe–S proteins regulate gene expression. Fe–S proteins are vulnerable to attack by biogenic nitric oxide, forming dinitrosyl iron complexes. In most Fe–S proteins, the terminal ligands on Fe are thiolate, but exceptions exist.

A hydrogenase is an enzyme that catalyses the reversible oxidation of molecular hydrogen (H2), as shown below:

<span class="mw-page-title-main">Pretomanid</span> Chemical compound

Pretomanid is an antibiotic medication used for the treatment of multi-drug-resistant tuberculosis affecting the lungs. It is generally used together with bedaquiline and linezolid. It is taken by mouth.

<span class="mw-page-title-main">5,10-Methenyltetrahydromethanopterin hydrogenase</span> Class of enzymes

The 5,10-methenyltetrahydromethanopterin hydrogenase, the so-called iron-sulfur cluster-free hydrogenase, is an enzyme found in methanogenic archea such as Methanothermobacter marburgensis. It was discovered and first characterized by the Thauer group at the Max Planck Institute in Marburg. Hydrogenases are enzymes that either reduce protons or oxidize molecular dihydrogen.

In enzymology, a coenzyme F420 hydrogenase (EC 1.12.98.1) is an enzyme that catalyzes the chemical reaction

In enzymology, a Methanosarcina-phenazine hydrogenase (EC 1.12.98.3) is an enzyme that catalyzes the chemical reaction

In enzymology, a 5,10-methylenetetrahydromethanopterin reductase (EC 1.5.98.2) is an enzyme that catalyzes the chemical reaction

In enzymology, a methylenetetrahydromethanopterin dehydrogenase (EC 1.5.98.1) is an enzyme that catalyzes the chemical reaction

DNA photolyase, N-terminal is an evolutionary conserved protein domain. This domain binds a light harvesting chromophore that enhanced the spectrum of photolyase or cryptochrome light absorption, i.e. an antenna. It adopts the rossmann fold.

Methanocaldococcus jannaschii is a thermophilic methanogenic archaean in the class Methanococci. It was the first archaeon, and third organism, to have its complete genome sequenced. The sequencing identified many genes unique to the archaea. Many of the synthesis pathways for methanogenic cofactors were worked out biochemically in this organism, as were several other archaeal-specific metabolic pathways.

Glucose-6-phosphate dehydrogenase (coenzyme-F420) is an enzyme with systematic name D-glucose-6-phosphate:F420 1-oxidoreductase. This enzyme catalyses the following chemical reaction

Delamanid, sold under the brand name Deltyba, is a medication used to treat tuberculosis. Specifically it is used, along with other antituberculosis medications, for active multidrug-resistant tuberculosis. It is taken by mouth.

2-phospho-L-lactate transferase is an enzyme with systematic name (2S)-lactyl-2-diphospho-5'-guanosine:7,8-didemethyl-8-hydroxy-5-deazariboflavin 2-phospho-L-lactate transferase. This enzyme catalyses the following chemical reaction

Coenzyme F420-1:γ-L-glutamate ligase (EC 6.3.2.34, F420:gamma-glutamyl ligase, CofE-AF, MJ0768, CofE) is an enzyme with systematic name L-glutamate:coenzyme F420-1 ligase (GDP-forming). This enzyme catalyses the following chemical reaction

Methanococcus maripaludis is a species of methanogenic archaea found in marine environments, predominantly salt marshes. M. maripaludis is a weakly motile, non-spore-forming, Gram-negative, strict anaerobic mesophile with a pleomorphic coccoid-rod shape, averaging 1.2 by 1.6 μm is size. The genome of M. maripaludis has been sequenced, and over 1,700 protein-coding genes have been identified. In ideal conditions, M. maripaludis grows quickly and can double every two hours.

Mycofactocin (MFT) is a family of small molecules derived from a peptide of the type known as RiPP (ribosomally synthesized and post-translationally modified peptides), naturally occurring in many types of Mycobacterium. It was discovered in a bioinformatics study in 2011. All mycofactocins share a precursor in the form of premycofactocin (PMFT); they differ by the cellulose tail added. Being redox active, both PMFT and MFT have an oxidized dione (mycofactocinone) form and a reduced diol (mycofactocinol) form, respectively termed PMFTH2 and MFTH2.

The H+-translocating F420H2 Dehydrogenase (F420H2DH) Family(TC# 3.D.9) is a member of the Na+ transporting Mrp superfamily. A single F420H2 dehydrogenase (also referred to as F420H2:quinol oxidoreductase) from the methanogenic archaeon, Methanosarcina mazei Gö1, has been shown to be a redox driven proton pump. The F420H2DH of M. mazei has a molecular size of about 120 kDa and contains Fe-S clusters and FAD. A similar five-subunit enzyme has been isolated from Methanolobus tindarius. The sulfate-reducing Archaeoglobus fulgidus (and several other archaea) also have this enzyme.

References

  1. Deppenmeier U (September 2002). "Redox-driven proton translocation in methanogenic Archaea". Cellular and Molecular Life Sciences. 59 (9): 1513–33. doi:10.1007/s00018-002-8526-3. PMID   12440773. S2CID   23199201.
  2. Selengut JD, Haft DH (November 2010). "Unexpected abundance of coenzyme F(420)-dependent enzymes in Mycobacterium tuberculosis and other actinobacteria". Journal of Bacteriology. 192 (21): 5788–98. doi:10.1128/JB.00425-10. PMC   2953692 . PMID   20675471.
  3. 1 2 3 Ney, B; Ahmed, FH; Carere, CR; Biswas, A; Warden, AC; Morales, SE; Pandey, G; Watt, SJ; Oakeshott, JG; Taylor, MC; Stott, MB; Jackson, CJ; Greening, C (January 2017). "The methanogenic redox cofactor F(420) is widely synthesized by aerobic soil bacteria". The ISME Journal. 11 (1): 125–137. Bibcode:2017ISMEJ..11..125N. doi: 10.1038/ismej.2016.100 . PMC   5315465 . PMID   27505347.
  4. 1 2 Glas AF, Maul MJ, Cryle M, Barends TR, Schneider S, Kaya E, Schlichting I, Carell T (July 2009). "The archaeal cofactor F0 is a light-harvesting antenna chromophore in eukaryotes". Proceedings of the National Academy of Sciences of the United States of America. 106 (28): 11540–5. Bibcode:2009PNAS..10611540G. doi: 10.1073/pnas.0812665106 . PMC   2704855 . PMID   19570997.
  5. 1 2 3 Grinter, Rhys; Greening, Chris (8 September 2021). "Cofactor F420: an expanded view of its distribution, biosynthesis and roles in bacteria and archaea". FEMS Microbiology Reviews. 45 (5). doi: 10.1093/femsre/fuab021 . PMC   8498797 . PMID   33851978.
  6. Fox JA, Livingston DJ, Orme-Johnson WH, Walsh CT (July 1987). "8-Hydroxy-5-deazaflavin-reducing hydrogenase from Methanobacterium thermoautotrophicum: 1. Purification and characterization". Biochemistry. 26 (14): 4219–27. doi:10.1021/bi00388a007. PMID   3663585.
  7. Hagemeier CH, Shima S, Thauer RK, Bourenkov G, Bartunik HD, Ermler U (October 2003). "Coenzyme F420-dependent methylenetetrahydromethanopterin dehydrogenase (Mtd) from Methanopyrus kandleri: a methanogenic enzyme with an unusual quarternary structure". Journal of Molecular Biology. 332 (5): 1047–57. doi:10.1016/S0022-2836(03)00949-5. PMID   14499608.
  8. te Brömmelstroet BW, Geerts WJ, Keltjens JT, van der Drift C, Vogels GD (September 1991). "Purification and properties of 5,10-methylenetetrahydromethanopterin dehydrogenase and 5,10-methylenetetrahydromethanopterin reductase, two coenzyme F420-dependent enzymes, from Methanosarcina barkeri". Biochimica et Biophysica Acta (BBA) - Protein Structure and Molecular Enzymology. 1079 (3): 293–302. doi:10.1016/0167-4838(91)90072-8. PMID   1911853.
  9. Abrahams, Katherine A.; Batt, Sarah M.; Gurcha, Sudagar S.; Veerapen, Natacha; Bashiri, Ghader; Besra, Gurdyal S. (28 June 2023). "DprE2 is a molecular target of the anti-tubercular nitroimidazole compounds pretomanid and delamanid". Nature Communications. 14 (1): 3828. Bibcode:2023NatCo..14.3828A. doi: 10.1038/s41467-023-39300-z . PMC   10307805 . PMID   37380634.