Coleoptile

Last updated
Schematic image of wheat coleoptile (above) and flag leaf (below) Coleoptile.png
Schematic image of wheat coleoptile (above) and flag leaf (below)
Young seedling breaks through the tip of the coleoptile (left). The majority of the tissue remains ungreening throughout the lifecycle (right). Mais kiemplant.jpg
Young seedling breaks through the tip of the coleoptile (left). The majority of the tissue remains ungreening throughout the lifecycle (right).

Coleoptile is the pointed protective sheath covering the emerging shoot in monocotyledons such as grasses in which few leaf primordia and shoot apex of monocot embryo remain enclosed. The coleoptile protects the first leaf as well as the growing stem in seedlings and eventually, allows the first leaf to emerge. [1] Coleoptiles have two vascular bundles, one on either side. Unlike the flag leaves rolled up within, the pre-emergent coleoptile does not accumulate significant protochlorophyll or carotenoids, and so it is generally very pale. Some preemergent coleoptiles do, however, accumulate purple anthocyanin pigments.

Contents

Coleoptiles consist of very similar cells that are all specialised to fast stretch growth. They do not divide, but increase in size as they accumulate more water. Coleoptiles also have water vessels (frequently two) along the axis to provide a water supply.

When a coleoptile reaches the surface, it stops growing and the flag leaves penetrate its top, continuing to grow along. The wheat coleoptile is most developed in the third day of the germination (if in the darkness).

Tropisms

Early experiments on phototropism using coleoptiles suggested that plants grow towards light because plant cells on the darker side elongate more than those on the lighter side. In 1880 Charles Darwin and his son Francis found that coleoptiles only bend towards the light when their tips are exposed. [2] Therefore, the tips must contain the photoreceptor cells although the bending takes place lower down on the shoot. A chemical messenger or hormone called auxin moves down the dark side of the shoot and stimulates growth on that side. The natural plant hormone responsible for phototropism is now known to be indoleacetic acid (IAA).

The Cholodny–Went model is named after Frits Warmolt Went of the California Institute of Technology and the Ukrainian scientist Nikolai Cholodny, who reached the same conclusion independently in 1927. It describes the phototropic and gravitropic properties of emerging shoots of monocotyledons. The model proposes that auxin, a plant growth hormone, is synthesized in the coleoptile tip, which senses light or gravity and will send the auxin down the appropriate side of the shoot. This causes asymmetric growth of one side of the plant. As a result, the plant shoot will begin to bend toward a light source or toward the surface. [3]

Coleoptiles also exhibit strong geotropic reaction, always growing upward and correcting direction after reorientation. Geotropic reaction is regulated by light (more exactly by phytochrome action).

Physiology

The coleoptile acts as a hollow organ with stiff walls, surrounding the young plantlet and the primary source of the gravitropic response. [4] It is ephemeral, resulting in rapid senescence after the shoot emerges. This process resembles the creation of aerenchyma in roots and other parts of the plant. [5] The coleoptile will emerge first appearing yellowish-white from an imbibed seed before developing chlorophyll on the next day. By the seventh day, it will have withered following programmed cell death. The coleoptile grows and produces chlorophyll only for the first day, followed by degradation and water potential caused growth. The two vascular bundles are organized parallel longitudinally to one another with a crack forming perpendicularly. Greening mesophyll cells with chlorophyll are present 2 to 3 cell layers from epidermis on the outer region of the crack, while non-greening cells are present everywhere else. The inner region contains cells with large amyloplasts supporting germination as well as the most interior cells dying to form aerenchyma.

The length of the coleoptile can be divided into an irreversible fraction, length at turgor pressure 0, and reversible fraction, or elastic shrinking. [6] Changes induced by white light increase water potential in epidermal cells and decrease osmotic pressure, which resulted in an increase in the length of the coleoptile. The presence of the expanding coleoptile has also been shown to support developing tissues in the seedling as a hydrostatic tube prior to its emergence through the coleoptile tip.

Adventitious roots initially derive from the coleoptile node, which quickly overtake the seminal root by volume. [7] In addition to being more numerous, these roots will be thicker (0.3–0.7mm) than the seminal root (0.2–0.4mm). These roots will grow faster than the shoots at low temperatures and slower at high temperatures.

Anaerobic germination

In a small number of plants, such as rice, anaerobic germination can occur in waterlogged conditions. The seed uses the coleoptile as a 'snorkel', providing the seed with access to oxygen. [8]

Related Research Articles

<span class="mw-page-title-main">Root</span> Basal organ of a vascular plant

In vascular plants, the roots are the organs of a plant that are modified to provide anchorage for the plant and take in water and nutrients into the plant body, which allows plants to grow taller and faster. They are most often below the surface of the soil, but roots can also be aerial or aerating, that is, growing up above the ground or especially above water.

<span class="mw-page-title-main">Germination</span> Process by which an organism grows from a spore or seed

Germination is the process by which an organism grows from a seed or spore. The term is applied to the sprouting of a seedling from a seed of an angiosperm or gymnosperm, the growth of a sporeling from a spore, such as the spores of fungi, ferns, bacteria, and the growth of the pollen tube from the pollen grain of a seed plant.

<span class="mw-page-title-main">Plant hormone</span> Chemical compounds that regulate plant growth and development

Plant hormones are signal molecules, produced within plants, that occur in extremely low concentrations. Plant hormones control all aspects of plant growth and development, including embryogenesis, the regulation of organ size, pathogen defense, stress tolerance and reproductive development. Unlike in animals each plant cell is capable of producing hormones. Went and Thimann coined the term "phytohormone" and used it in the title of their 1937 book.

<span class="mw-page-title-main">Hypocotyl</span> Plant part

The hypocotyl is the stem of a germinating seedling, found below the cotyledons and above the radicle (root).

<span class="mw-page-title-main">Auxin</span> Plant hormone

Auxins are a class of plant hormones with some morphogen-like characteristics. Auxins play a cardinal role in coordination of many growth and behavioral processes in plant life cycles and are essential for plant body development. The Dutch biologist Frits Warmolt Went first described auxins and their role in plant growth in the 1920s. Kenneth V. Thimann became the first to isolate one of these phytohormones and to determine its chemical structure as indole-3-acetic acid (IAA). Went and Thimann co-authored a book on plant hormones, Phytohormones, in 1937.

<span class="mw-page-title-main">Amyloplast</span> Type of plastid, double-enveloped organelles in plant cells

Amyloplasts are a type of plastid, double-enveloped organelles in plant cells that are involved in various biological pathways. Amyloplasts are specifically a type of leucoplast, a subcategory for colorless, non-pigment-containing plastids. Amyloplasts are found in roots and storage tissues, and they store and synthesize starch for the plant through the polymerization of glucose. Starch synthesis relies on the transportation of carbon from the cytosol, the mechanism by which is currently under debate.

<span class="mw-page-title-main">Tropism</span> Directed growth of an organism in response to environmental stimuli

In biology, a tropism is a phenomenon indicating the growth or turning movement of an organism, usually a plant, in response to an environmental stimulus. In tropisms, this response is dependent on the direction of the stimulus. Tropisms are usually named for the stimulus involved; for example, a phototropism is a movement to the light source, and an anemotropism is the response and adaptation of plants to the wind.

<span class="mw-page-title-main">Plant physiology</span> Subdiscipline of botany

Plant physiology is a subdiscipline of botany concerned with the functioning, or physiology, of plants.

<span class="mw-page-title-main">Thigmotropism</span> Directed growth of plants in response to touch

In plant biology, thigmotropism is a directional growth movement which occurs as a mechanosensory response to a touch stimulus. Thigmotropism is typically found in twining plants and tendrils, however plant biologists have also found thigmotropic responses in flowering plants and fungi. This behavior occurs due to unilateral growth inhibition. That is, the growth rate on the side of the stem which is being touched is slower than on the side opposite the touch. The resultant growth pattern is to attach and sometimes curl around the object which is touching the plant. However, flowering plants have also been observed to move or grow their sex organs toward a pollinator that lands on the flower, as in Portulaca grandiflora.

<span class="mw-page-title-main">Gravitropism</span> Plant growth in reaction to gravity and bending of leaves and roots

Gravitropism is a coordinated process of differential growth by a plant in response to gravity pulling on it. It also occurs in fungi. Gravity can be either "artificial gravity" or natural gravity. It is a general feature of all higher and many lower plants as well as other organisms. Charles Darwin was one of the first to scientifically document that roots show positive gravitropism and stems show negative gravitropism. That is, roots grow in the direction of gravitational pull and stems grow in the opposite direction. This behavior can be easily demonstrated with any potted plant. When laid onto its side, the growing parts of the stem begin to display negative gravitropism, growing upwards. Herbaceous (non-woody) stems are capable of a degree of actual bending, but most of the redirected movement occurs as a consequence of root or stem growth outside. The mechanism is based on the Cholodny–Went model which was proposed in 1927, and has since been modified. Although the model has been criticized and continues to be refined, it has largely stood the test of time.

In developmental biology, photomorphogenesis is light-mediated development, where plant growth patterns respond to the light spectrum. This is a completely separate process from photosynthesis where light is used as a source of energy. Phytochromes, cryptochromes, and phototropins are photochromic sensory receptors that restrict the photomorphogenic effect of light to the UV-A, UV-B, blue, and red portions of the electromagnetic spectrum.

<span class="mw-page-title-main">Frits Warmolt Went</span> Dutch botanist (1903–1990)

Frits Warmolt Went was a Dutch biologist whose 1928 experiment demonstrated the existence of auxin in plants.

<span class="mw-page-title-main">Lateral root</span> Plant root

Lateral roots, emerging from the pericycle, extend horizontally from the primary root (radicle) and over time makeup the iconic branching pattern of root systems. They contribute to anchoring the plant securely into the soil, increasing water uptake, and facilitate the extraction of nutrients required for the growth and development of the plant. Lateral roots increase the surface area of a plant's root system and can be found in great abundance in several plant species. In some cases, lateral roots have been found to form symbiotic relationships with rhizobia (bacteria) and mycorrhizae (fungi) found in the soil, to further increase surface area and increase nutrient uptake.

<span class="mw-page-title-main">Etiolation</span> Developmental pathway followed in flowering plants in absence of visible light

Etiolation is a process in flowering plants grown in partial or complete absence of light. It is characterized by long, weak stems; smaller leaves due to longer internodes; and a pale yellow color (chlorosis). The development of seedlings in the dark is known as "skotomorphogenesis" and leads to etiolated seedlings.

Important structures in plant development are buds, shoots, roots, leaves, and flowers; plants produce these tissues and structures throughout their life from meristems located at the tips of organs, or between mature tissues. Thus, a living plant always has embryonic tissues. By contrast, an animal embryo will very early produce all of the body parts that it will ever have in its life. When the animal is born, it has all its body parts and from that point will only grow larger and more mature. However, both plants and animals pass through a phylotypic stage that evolved independently and that causes a developmental constraint limiting morphological diversification.

<span class="mw-page-title-main">Statocyte</span>

Statocytes are gravity-sensing (gravitropic) cells in higher plants. They contain amyloplasts-statoliths – starch-filled amyloplastic organelles – which sediment at the lowest part of the cells. In the roots, sedimentation of the statoliths towards the lower part of the statocytes constitutes a signal for the production and redistribution of auxin. When stems or roots are not exactly aligned with the gravity vector, statoliths move and adjust to gravity. This is followed by a triggering of the asymmetrical distribution of auxin that causes the curvature and growth of stems against the gravity vector, as well as growth of roots along the gravity vector. Statocytes are present in the elongating region of coleoptiles, shoots and inflorescence stems. In roots, the root cap is the only place where sedimentation is observed, and only the central columella cells of the root cap serve as gravity-sensing statocytes. They can initiate differential growth patterns, bending the root towards the vertical axis.

<span class="mw-page-title-main">Phototropism</span> Growth of a plant in response to a light stimulus

In biology, phototropism is the growth of an organism in response to a light stimulus. Phototropism is most often observed in plants, but can also occur in other organisms such as fungi. The cells on the plant that are farthest from the light contain a hormone called auxin that reacts when phototropism occurs. This causes the plant to have elongated cells on the furthest side from the light. Phototropism is one of the many plant tropisms, or movements, which respond to external stimuli. Growth towards a light source is called positive phototropism, while growth away from light is called negative phototropism. Negative phototropism is not to be confused with skototropism, which is defined as the growth towards darkness, whereas negative phototropism can refer to either the growth away from a light source or towards the darkness. Most plant shoots exhibit positive phototropism, and rearrange their chloroplasts in the leaves to maximize photosynthetic energy and promote growth. Some vine shoot tips exhibit negative phototropism, which allows them to grow towards dark, solid objects and climb them. The combination of phototropism and gravitropism allow plants to grow in the correct direction.

<span class="mw-page-title-main">Cholodny–Went model</span> Botany model

In botany, the Cholodny–Went model, proposed in 1927, is an early model describing tropism in emerging shoots of monocotyledons, including the tendencies for the shoot to grow towards the light (phototropism) and the roots to grow downward (gravitropism). In both cases the directional growth is considered to be due to asymmetrical distribution of auxin, a plant growth hormone. Although the model has been criticized and continues to be refined, it has largely stood the test of time.

<span class="mw-page-title-main">Nikolai Cholodny</span>

Mykola Hryhorovych Kholodny was an influential microbiologist who worked at the University of Kyiv, Ukraine in the USSR during the 1930s.

Peter Boysen Jensen was a Danish plant physiologist. His research was fundamental to further work on the auxin theory of tropisms.

References

  1. "Coleoptiles - an overview | ScienceDirect Topics". www.sciencedirect.com. Retrieved 2021-05-04.
  2. Darwin, C. R. (1880). The Power of Movement in Plants. London: Murray.
  3. Rashotte; et al. (February 2000). "Basipetal Auxin Transport Is Required for Gravitropism in Roots of Arabidopsis". Plant Physiology. 122 (2): 481–490. doi:10.1104/pp.122.2.481. PMC   58885 . PMID   10677441.
  4. Edelmann, Hans G. (1996-10-01). "Coleoptiles are gravi-guiding systems vital for gravi-insensitive shoots of germinating grass seedlings". Planta. 200 (2): 281–282. doi:10.1007/BF00208320. ISSN   1432-2048. PMID   11541944. S2CID   20664660.
  5. Inada, Noriko; Sakai, Atsushi; Kuroiwa, Haruko; Kuroiwa, Tsuneyoshi (2002). "Three-Dimensional Progression of Programmed Death in the Rice Coleoptile". In Jeon, Kwang W. (ed.). A Survey of Cell Biology. International Review of Cytology. Vol. 218. pp. 221–260e. doi:10.1016/S0074-7696(02)18014-4. ISBN   9780123646224. PMID   12199518.
  6. Kutschera, U. (2004). "The Biophysical Basis of Cell Elongation and Organ Maturation in Coleoptiles of Rye Seedlings: Implications for Shoot Development1". Plant Biology. 6 (2): 158–164. doi:10.1055/s-2004-815734. ISSN   1438-8677. PMID   15045666.
  7. Khan, Khalil; Shewry, Peter R., eds. (2009). Wheat (4th ed.). Elsevier. ISBN   9781891127557.
  8. Magneschi, Leonardo; Perata, Pierdomenico (25 July 2008). "Rice germination and seedling growth in the absence of oxygen". Annals of Botany. 103 (2): 181–196. doi:10.1093/aob/mcn121. PMC   2707302 . PMID   18660495 . Retrieved 27 March 2022.