Collaborative mapping

Last updated

Collaborative mapping, also known as citizen mapping, [1] is the aggregation of Web mapping and user-generated content, [2] from a group of individuals or entities, and can take several distinct forms. With the growth of technology for storing and sharing maps, collaborative maps have become competitors to commercial services, in the case of OpenStreetMap, or components of them, as in Google Map Maker, Waze and Yandex Map Editor.

Contents

Volunteers collect geographic information and the citizens/individuals can be regarded as sensors within a geographical environment that create, assemble, and disseminate geographic data provided voluntarily by the individuals. [2] [3] Collaborative mapping is a special case of the larger phenomenon known as crowd sourcing, that allows citizens to be part of collaborative approach to accomplish a goal. The goals in collaborative mapping have a geographical aspect, e.g. having a more active role in urban planning. Especially when data, information, knowledge is distributed in a population and an aggregation of data is not available, then collaborative mapping can bring a benefit for the citizens or activities in a community with an e-Planing Platform. [4] Extensions of critical and participatory approaches to geographic information systems combines software tools with a joint activities to accomplish a community goal. [5] Additionally, the aggregated data can be used for a Location-based service like available public transport options at the geolocation where a mobile device is currently used (GPS-sensor). The relevance for the user at a specific geolocation cannot be represented with logic value in general (relevant=true/false). The relevance can be represented with Fuzzy-Logic or a Fuzzy architectural spatial analysis. [6]

Types

Collaborative mapping applications vary depending on which feature the collaborative edition takes place: on the map itself (shared surface), or on overlays to the map. A very simple collaborative mapping application would just plot users' locations (social mapping or geosocial networking) or Wikipedia articles' locations (Placeopedia). Collaborative implies the possibility of edition by several distinct individuals so the term would tend to exclude applications where the maps are not meant for the general user to modify.

In this kind of application, the map itself is created collaboratively by sharing a common surface. For example, both OpenStreetMap and WikiMapia allow for the creation of single 'points of interest', as well as linear features and areas. Collaborative mapping and specifically surface sharing faces the same problems as revision control, namely concurrent access issues and versioning. In addition to these problems, collaborative maps must deal with the difficult issue of cluttering, due to the geometric constraints inherent in the media. One approach to this problem is using overlays, allowing to suitable use in consumer services. [7] Despite these issues, collaborative mapping platforms such as OpenStreetMap can be considered as being as trustworthy as professionally produced maps [8]

Overlays group together items on a map, allowing the user of the map to toggle the overlay's visibility and thus all items contained in the overlay. The application uses map tiles from a third-party (for example one of the mapping APIs) and adds its own collaboratively edited overlays to them, sometimes in a wiki fashion. If each user's revisions are contained in an overlay, the issue of revision control and cluttering can be mitigated. One example of this is the accessibility platform Accessadvisr, which utilises collaborative mapping to inform persons of accessibility issues, [9] which is perceived to be as reliable and trustworthy as professional information. [10]

Other overlays-based collaborative mapping tools follow a different approach and focus on user centered content creation and experience. There users enrich maps with their own points of interest and build kind of travel books for themselves. At the same time users can explore overlays of other users as collaborative extension.

Humanitarian collaborative mapping

Humanitarian OpenStreetMap Team, [11] [12] [13] based on OpenStreetMap, [14] provides collaborative mapping support for humanitarian objectives, e.g. collaborative transportation map, [15] epidemiological mapping for Malaria, [16] earthquake response, [17] or typhoon response. [18]

Collaborative robotic mapping

In robot navigation, 3-dimensional maps can be reconstructed collaboratively using simultaneous localization and mapping. [19] [20]

Private local collaboration using maps

Some mapping companies offer an online mapping tool that allows private collaboration between users when mapping sensitive data on digital maps, e.g.:

Quality assurance

If citizens or a community collects data, information (like Wikipedia, Wikiversity) then concerns come up about data quality, and specifically about its credibility. The same aspects of quality assurance are relevant for collaborative mapping [25] and the possibility of vandalism. [26]

Data collection tools

Collaborative mapping is not restricted to the application of mobile devices but if data is captured with a mobile device the satellite navigation (like GPS is helpful to assign the current geolocation to the collected data at the geolocation. Open Source tools like ODK are used to collect the mapping data (e.g. about health care facilities or humanitarian operations) with a survey that could automatically insert the geolocation into the survey data that could include visual information (e.g. images, videos) and audio samples collected at the current geolocation. An image can be used e.g. as additional information of damage assessment after an earth quake. [27]

Restricted visibility of alterations

These sites provide general base map information and allow users to create their own content by marking locations where various events occurred or certain features exist, but aren’t already shown on the base map. Some examples include 311-style request systems [28] and 3D spatial technology. [29]

Public alterations and quality assured versions

The openness for changes to the community is possible for all individuals and the community is validating changes by putting regions and location at their personal watchlist. Any changes in the joint repository of the mapping process are captured by a version control system- Reverting changes is possible and specific quality assured versions of specific areas can be marked as reference map for a specific area (like permanent links in Wikipedia). Quality assurance can be implemented on different scales:

Blockchain can be used as integrity check of alterations [30] or digital signature [31] can be used to mark a certain version as "quality assured" by the institution that signed a map as digital file or digital content.

See also

Related Research Articles

<span class="mw-page-title-main">Geographic information system</span> System to capture, manage and present geographic data

A geographic information system (GIS) consists of integrated computer hardware and software that store, manage, analyze, edit, output, and visualize geographic data. Much of this often happens within a spatial database, however, this is not essential to meet the definition of a GIS. In a broader sense, one may consider such a system also to include human users and support staff, procedures and workflows, the body of knowledge of relevant concepts and methods, and institutional organizations.

<span class="mw-page-title-main">Geotagging</span> Act of associating geographic coordinates to digital media

Geotagging, or GeoTagging, is the process of adding geographical identification metadata to various media such as a geotagged photograph or video, websites, SMS messages, QR Codes or RSS feeds and is a form of geospatial metadata. This data usually consists of latitude and longitude coordinates, though they can also include altitude, bearing, distance, accuracy data, and place names, and perhaps a time stamp.

Address geocoding, or simply geocoding, is the process of taking a text-based description of a location, such as an address or the name of a place, and returning geographic coordinates, frequently latitude/longitude pair, to identify a location on the Earth's surface. Reverse geocoding, on the other hand, converts geographic coordinates to a description of a location, usually the name of a place or an addressable location. Geocoding relies on a computer representation of address points, the street / road network, together with postal and administrative boundaries.

A GIS software program is a computer program to support the use of a geographic information system, providing the ability to create, store, manage, query, analyze, and visualize geographic data, that is, data representing phenomena for which location is important. The GIS software industry encompasses a broad range of commercial and open-source products that provide some or all of these capabilities within various information technology architectures.

<span class="mw-page-title-main">OpenStreetMap</span> Collaborative project to create a free editable map of the world

OpenStreetMap (OSM) is a free, open geographic database updated and maintained by a community of volunteers via open collaboration. Contributors collect data from surveys, trace from aerial imagery and also import from other freely licensed geodata sources. OpenStreetMap is freely licensed under the Open Database License and as a result commonly used to make electronic maps, inform turn-by-turn navigation, assist in humanitarian aid and data visualisation. OpenStreetMap uses its own topology to store geographical features which can then be exported into other GIS file formats. The OpenStreetMap website itself is an online map, geodata search engine and editor.

<span class="mw-page-title-main">Point of interest</span>

A point of interest (POI) is a specific point location that someone may find useful or interesting. An example is a point on the Earth representing the location of the Eiffel Tower, or a point on Mars representing the location of its highest mountain, Olympus Mons. Most consumers use the term when referring to hotels, campsites, fuel stations or any other categories used in modern automotive navigation systems.

The Open Source Geospatial Foundation (OSGeo), is a non-profit non-governmental organization whose mission is to support and promote the collaborative development of open geospatial technologies and data. The foundation was formed in February 2006 to provide financial, organizational and legal support to the broader Libre/Free and open-source geospatial community. It also serves as an independent legal entity to which community members can contribute code, funding and other resources.

MapInfo Pro is a desktop geographic information system (GIS) software developed by Precisely, used for mapping and location analysis. It was formerly developed by Pitney Bowes Software and the MapInfo Corporation.

Digital Earth is the name given to a concept by former US vice president Al Gore in 1998, describing a virtual representation of the Earth that is georeferenced and connected to the world's digital knowledge archives.

Participatory GIS (PGIS) or public participation geographic information system (PPGIS) is a participatory approach to spatial planning and spatial information and communications management.

<span class="mw-page-title-main">Web mapping</span> Process of using the maps delivered by geographic information systems (GIS) in World Wide Web

Web mapping or an online mapping is the process of using, creating, and distributing maps on the World Wide Web, usually through the use of Web geographic information systems. A web map or an online map is both served and consumed, thus, web mapping is more than just web cartography, it is a service where consumers may choose what the map will show.

Distributed GIS refers to GI Systems that do not have all of the system components in the same physical location. This could be the processing, the database, the rendering or the user interface. It represents a special case of distributed computing, with examples of distributed systems including Internet GIS, Web GIS, and Mobile GIS. Distribution of resources provides corporate and enterprise-based models for GIS. Distributed GIS permits a shared services model, including data fusion based on Open Geospatial Consortium (OGC) web services. Distributed GIS technology enables modern online mapping systems, Location-based services (LBS), web-based GIS and numerous map-enabled applications. Other applications include transportation, logistics, utilities, farm / agricultural information systems, real-time environmental information systems and the analysis of the movement of people. In terms of data, the concept has been extended to include volunteered geographical information. Distributed processing allows improvements to the performance of spatial analysis through the use of techniques such as parallel processing.

Traditional knowledge geographic information systems (GIS) are the data, techniques, and technologies designed to document and utilize local knowledges in communities around the world. Traditional knowledge is information that encompasses the experiences of a particular culture or society. Traditional knowledge GIS differ from ordinary cognitive maps in that they express environmental and spiritual relationships among real and conceptual entities. This toolset focuses on cultural preservation, land rights disputes, natural resource management, and economic development.

Volunteered geographic information (VGI) is the harnessing of tools to create, assemble, and disseminate geographic data provided voluntarily by individuals. VGI is a special case of the larger phenomenon known as user-generated content, and allows people to have a more active role in activities such as urban planning and mapping.

Neogeography is the use of geographical techniques and tools for personal and community activities or by a non-expert group of users. Application domains of neogeography are typically not formal or analytical.

Geographic information systems (GIS) play a constantly evolving role in geospatial intelligence (GEOINT) and United States national security. These technologies allow a user to efficiently manage, analyze, and produce geospatial data, to combine GEOINT with other forms of intelligence collection, and to perform highly developed analysis and visual production of geospatial data. Therefore, GIS produces up-to-date and more reliable GEOINT to reduce uncertainty for a decisionmaker. Since GIS programs are Web-enabled, a user can constantly work with a decision maker to solve their GEOINT and national security related problems from anywhere in the world. There are many types of GIS software used in GEOINT and national security, such as Google Earth, ERDAS IMAGINE, GeoNetwork opensource, and Esri ArcGIS.

<span class="mw-page-title-main">GIS and environmental governance</span> Tool for environmental management

Geographic information system (GIS) is a commonly used tool for environmental management, modelling and planning. As simply defined by Michael Goodchild, GIS is as "a computer system for handling geographic information in a digital form". In recent years it has played an integral role in participatory, collaborative and open data philosophies. Social and technological evolutions have elevated digital and environmental agendas to the forefront of public policy, the global media and the private sector.

<span class="mw-page-title-main">WorldMap</span> Web platform

WorldMap is a web platform for creating, displaying, analyzing, and searching spatial data and other data forms across multiple disciplines.

<span class="mw-page-title-main">Crisis mapping</span> Real-time gathering, display and analysis of data during a crisis

Crisis mapping is the real-time gathering, display and analysis of data during a crisis, usually a natural disaster or social/political conflict. Crisis mapping projects usually allows large numbers of people, including the public and crisis responders, to contribute information either remotely or from the site of the crisis. One benefit of the crisis mapping method over others is that it can increase situational awareness, since the public can report information and improve data management.

Crowdmapping is a subtype of crowdsourcing by which aggregation of crowd-generated inputs such as captured communications and social media feeds are combined with geographic data to create a digital map that is as up-to-date as possible on events such as wars, humanitarian crises, crime, elections, or natural disasters. Such maps are typically created collaboratively by people coming together over the Internet.

References

  1. Swift, Mike (June 20, 2010). "Volunteers create new digital maps". Lansing State Journal . MCT News Service. pp. 4E. Retrieved October 31, 2022 via Newspapers.com.
  2. 1 2 Goodchild, M.F. (2007). "Citizens as sensors: the world of volunteered geography". GeoJournal. 69 (4): 211–221. CiteSeerX   10.1.1.525.2435 . doi:10.1007/s10708-007-9111-y. S2CID   2105836.
  3. Sangiambut, Suthee; Sieber, Renee (2016-07-12). "The V in VGI: Citizens or Civic Data Sources" (PDF). Urban Planning. 1 (2): 141–154. doi: 10.17645/up.v1i2.644 .
  4. Steiniger, Stefan; Poorazizi, M. Ebrahim; Hunter, Andrew (2016-06-20). "Planning with Citizens: Implementation of an e-Planning Platform and Analysis of Research Needs". Urban Planning. 1 (2): 46–64. doi: 10.17645/up.v1i2.607 .
  5. Elwood, S. (2008). "Volunteered Geographic Information: Future Research Directions Motivated by Critical, Participatory, and Feminist GIS". GeoJournal. 72 (3&4): 173–183. CiteSeerX   10.1.1.464.751 . doi:10.1007/s10708-008-9186-0. S2CID   31556791.
  6. Ricker, B., Daniel, S. and Hedley, N. (2014) ‘Fuzzy Boundaries: Hybridizing Location-based Services, Volunteered Geographic Information and Geovisualization Literature’, Geography Compass, 8(7). doi: 10.1111/gec3.12138
  7. Parker, C.J., May, A., Mitchell, V. and Burrows, A. (2013), “Capturing Volunteered Information for Inclusive Service Design: Potential Benefits and Challenges”, The Design Journal, Vol. 16 No. 2, pp. 197–218.
  8. Parker, C.J., May, A.J. and Mitchell, V. (2014), “User Centred Design of Neogeography: The Impact of Volunteered Geographic Information on Trust of Online Map ‘Mashups’”, Ergonomics, Vol. 57 No. 7, pp. 987–997.
  9. May, A.J., Parker, C.J. and Ross, T. (2014), “Evaluating a concept design of a crowd-sourced ‘mashup’ providing ease-of-access information for people with limited mobility”, Transportation Research. Part C: Emerging Technologies, Vol. 49 No. 1, pp. 103–113.
  10. Parker, C.J., May, A.J. and Mitchell, V. (2012), “Understanding Design with VGI using an Information Relevance Framework”, Transactions in GIS, Transactions in GIS: GISRUK Special Issue, Vol. 16 No. 4, pp. 545–560.
  11. Palen, L., Soden, R., Anderson, T. J., & Barrenechea, M. (2015, April). Success & scale in a data-producing organization: The socio-technical evolution of OpenStreetMap in response to humanitarian events. In Proceedings of the 33rd annual ACM conference on human factors in computing systems (pp. 4113–4122). ACM.
  12. Curran, K., Crumlish, J., & Fisher, G. (2013). OpenStreetMap. In Geographic Information Systems: Concepts, Methodologies, Tools, and Applications (pp. 540–549). IGI Global.
  13. HOT – Humanitarian OpenStreetMap Team – Web portal: https://www.hotosm.org/ (accessed 2017/08/14)
  14. Haklay, M., & Weber, P. (2008). Openstreetmap: User-generated street maps. IEEE Pervasive Computing, 7(4), 12–18.
  15. HOT Metropolitan Map for Managua – accessed (2017/08/14) HOT-project information – Project: http://support.mapanica.net Archived 2017-11-19 at the Wayback Machine
  16. "Humanitarian OpenStreetMap Team | Infectious diseases: Malaria elimination". 8 February 2017.
  17. Soden, R., & Palen, L. (2014). From crowdsourced mapping to community mapping: The post-earthquake work of OpenStreetMap Haiti. In COOP 2014-Proceedings of the 11th International Conference on the Design of Cooperative Systems, 27–30 May 2014, Nice (France) (pp. 311–326). Springer, Cham.
  18. "Typhoon Haiyan - OpenStreetMap Wiki". wiki.openstreetmap.org. Retrieved 2019-02-24.
  19. Michael, Nathan, et al. "Collaborative mapping of an earthquake‐damaged building via ground and aerial robots." Journal of Field Robotics 29.5 (2012): 832-841.
  20. Mohanarajah, Gajamohan, et al. "Cloud-based collaborative 3D mapping in real-time with low-cost robots." IEEE Transactions on Automation Science and Engineering 12.2 (2015): 423-431.
  21. Butler, Patrick (2014-04-10). "Collaborative mapping | Collaborative mapping". Espatial.com. Retrieved 2016-01-15.
  22. Boella, G., Francis, L., Grassi, E., Kistner, A., Nitsche, A., Noskov, A., ... & Tsampoulatidis, I. (2018, April). Wegovnow: a map based platform to engage the local civic society. In Companion of The Web Conference 2018 on The Web Conference 2018 (pp. 1215-1219). International World Wide Web Conferences Steering Committee.
  23. "Private local collaboration via maps | collaborative mapping platform", uebermaps.com, 2017-03-24, retrieved 2017-03-24
  24. "Canvis.app | Case Studies - Infrastructure Planning". about.canvis.app. Retrieved 2019-08-30.
  25. Flanagin, A. J.; Metzger, M. J. (2008). "The credibility of volunteered geographic information". GeoJournal. 72 (3–4): 137–148. doi:10.1007/s10708-008-9188-y. S2CID   15975229.
  26. Ballatore, A. (2014). "Defacing the map: Cartographic vandalism in the digital commons". The Cartographic Journal. 51 (3): 214–224. arXiv: 1404.3341 . Bibcode:2014CartJ..51..214B. doi:10.1179/1743277414Y.0000000085. S2CID   1828882.
  27. Barrington, L., Ghosh, S., Greene, M., Har-Noy, S., Berger, J., Gill, S., Lin, A.Y.M., Huyck, C., 2011. Crowdsourcing earthquake damage assessment using remote sensing imagery. Annals of Geophysics 54, 680-687
  28. Lu, Qing; Johnson, Peter (2016-06-07). "Characterizing New Channels of Communication: A Case Study of Municipal 311 Requests in Edmonton, Canada". Urban Planning. 1 (2): 18–31. doi: 10.17645/up.v1i2.621 . hdl: 10012/11064 .
  29. Sabri, Soheil; Rajabifard, Abbas; Ho, Serene; Amirebrahimi, Sam; Bishop, Ian (2016-06-15). "Leveraging VGI Integrated with 3D Spatial Technology to Support Urban Intensification in Melbourne, Australia". Urban Planning. 1 (2): 32–48. doi: 10.17645/up.v1i2.623 .
  30. Brambilla, G., Amoretti, M., & Zanichelli, F. (2016). Using blockchain for peer-to-peer proof-of-location. arXiv preprint arXiv:1607.00174.
  31. Merkle, R. C. (1989, August). A certified digital signature. In Conference on the Theory and Application of Cryptology (pp. 218-238). Springer, New York, NY.