Collision domain

Last updated

A collision domain is a network segment (connected by a shared medium or through repeaters) where simultaneous data transmissions collide with one another as a result of more than one device attempting to send a packet on the network segment at the same time. The collision domain applies particularly in wireless networks, but also affected early versions of Ethernet. Members of a collision domain may be involved in collisions with one another. Devices outside the collision domain do not have collisions with those inside.

Contents

A channel access method dictates that only one device in the collision domain may transmit at any one time, and the other devices in the domain listen to the network and refrain from transmitting while others are already transmitting in order to avoid collisions. Because only one device may be transmitting at any one time, total network bandwidth is shared among all devices on the collision domain. Collisions also decrease network efficiency in a collision domain as collisions require devices to abort transmission and retransmit at a later time.

Since data bits are propagated at a finite speed, simultaneously is to be defined in terms of the size of the collision domain and the minimum packet size allowed. A smaller packet size or a larger dimension would make it possible for a sender to finish sending the packet without the first bits of the message being able to reach the most remote node. So, that node could start sending as well, without a clue to the transmission already taking place and destroying the first packet. Unless the size of the collision domain allows the initial sender to receive the second transmission attempt – the collision – within the time it takes to send the packet, they would neither be able to detect the collision nor to repeat the transmission this is called a late collision.

Ethernet

On Ethernet using shared media, collisions are resolved using carrier-sense multiple access with collision detection (CSMA/CD) in which the competing packets are discarded and re-sent one at a time. This becomes a source of inefficiency in the network. [1]

Early Ethernet variants (10BASE5, 10BASE2) were based on a shared wire and inherently half-duplex, representing a single, potentially large collision domain. Collision domains are also found in an Ethernet hub or repeater environment where each host segment connects to a hub, and all segments represent only one collision domain within one broadcast domain. Collision domains are also found in other shared medium networks, e. g. wireless networks such as Wi-Fi.

Modern wired networks use a network switch to reduce or eliminate collisions. By connecting each device directly to a port on the switch, either each port on a switch becomes its own collision domain (in the case of half-duplex links), or the possibility of collisions is eliminated in the case of full-duplex links. For Gigabit Ethernet and faster, no hubs or repeaters exist and all devices require full-duplex links.

Wireless networks

Hidden node problem: Devices A, B and C are in the same collision domain. A and C are both communicating with B, but are unaware of each other. Wifi hidden station problem.svg
Hidden node problem: Devices A, B and C are in the same collision domain. A and C are both communicating with B, but are unaware of each other.

Most wireless LAN networks use the carrier-sense multiple access with collision avoidance (CSMA/CA) method. In addition to the requirements of a shared wire medium, wireless networks add the hidden node problem where two senders can't hear each other's transmissions, but they cause a collision at the receiver between them. Multiple Access with Collision Avoidance for Wireless is one such approach used, specifically in 802.11 RTS/CTS. Central coordination is another means of solving this problem for a collision domain. This technique is employed by Wireless Multimedia Extensions. Point coordination function and distributed coordination function are specific implementations.

Related Research Articles

A broadcast domain is a logical division of a computer network, in which all nodes can reach each other by broadcast at the data link layer. A broadcast domain can be within the same LAN segment or it can be bridged to other LAN segments.

<span class="mw-page-title-main">Ethernet</span> Computer networking technology

Ethernet is a family of wired computer networking technologies commonly used in local area networks (LAN), metropolitan area networks (MAN) and wide area networks (WAN). It was commercially introduced in 1980 and first standardized in 1983 as IEEE 802.3. Ethernet has since been refined to support higher bit rates, a greater number of nodes, and longer link distances, but retains much backward compatibility. Over time, Ethernet has largely replaced competing wired LAN technologies such as Token Ring, FDDI and ARCNET.

Network throughput refers to the rate of message delivery over a communication channel, such as Ethernet or packet radio, in a communication network. The data that these messages contain may be delivered over physical or logical links, or through network nodes. Throughput is usually measured in bits per second, and sometimes in data packets per second or data packets per time slot.

A network switch is networking hardware that connects devices on a computer network by using packet switching to receive and forward data to the destination device.

<span class="mw-page-title-main">Carrier-sense multiple access with collision avoidance</span> Computer network multiple access method

Carrier-sense multiple access with collision avoidance (CSMA/CA) in computer networking, is a network multiple access method in which carrier sensing is used, but nodes attempt to avoid collisions by beginning transmission only after the channel is sensed to be "idle". When they do transmit, nodes transmit their packet data in its entirety.

Carrier-sense multiple access with collision detection (CSMA/CD) is a medium access control (MAC) method used most notably in early Ethernet technology for local area networking. It uses carrier-sensing to defer transmissions until no other stations are transmitting. This is used in combination with collision detection in which a transmitting station detects collisions by sensing transmissions from other stations while it is transmitting a frame. When this collision condition is detected, the station stops transmitting that frame, transmits a jam signal, and then waits for a random time interval before trying to resend the frame.

<span class="mw-page-title-main">Network topology</span> Arrangement of a communication network

Network topology is the arrangement of the elements of a communication network. Network topology can be used to define or describe the arrangement of various types of telecommunication networks, including command and control radio networks, industrial fieldbusses and computer networks.

Carrier-sense multiple access (CSMA) is a medium access control (MAC) protocol in which a node verifies the absence of other traffic before transmitting on a shared transmission medium, such as an electrical bus or a band of the electromagnetic spectrum.

In telecommunications and computer networks, a channel access method or multiple access method allows more than two terminals connected to the same transmission medium to transmit over it and to share its capacity. Examples of shared physical media are wireless networks, bus networks, ring networks and point-to-point links operating in half-duplex mode.

ALOHAnet, also known as the ALOHA System, or simply ALOHA, was a pioneering computer networking system developed at the University of Hawaii.

The data link layer, or layer 2, is the second layer of the seven-layer OSI model of computer networking. This layer is the protocol layer that transfers data between nodes on a network segment across the physical layer. The data link layer provides the functional and procedural means to transfer data between network entities and may also provide the means to detect and possibly correct errors that can occur in the physical layer.

<span class="mw-page-title-main">Communication channel</span> Physical or logical connection used for transmission of information

A communication channel refers either to a physical transmission medium such as a wire, or to a logical connection over a multiplexed medium such as a radio channel in telecommunications and computer networking. A channel is used for information transfer of, for example, a digital bit stream, from one or several senders to one or several receivers. A channel has a certain capacity for transmitting information, often measured by its bandwidth in Hz or its data rate in bits per second.

<span class="mw-page-title-main">Medium access control</span> Service layer in IEEE 802 network standards

In IEEE 802 LAN/MAN standards, the medium access control (MAC), also called media access control, is the layer that controls the hardware responsible for interaction with the wired or wireless transmission medium. The MAC sublayer and the logical link control (LLC) sublayer together make up the data link layer. The LLC provides flow control and multiplexing for the logical link, while the MAC provides flow control and multiplexing for the transmission medium.

A network segment is a portion of a computer network. The nature and extent of a segment depends on the nature of the network and the device or devices used to interconnect end stations.

In telecommunications, a point-to-point connection refers to a communications connection between two communication endpoints or nodes. An example is a telephone call, in which one telephone is connected with one other, and what is said by one caller can only be heard by the other. This is contrasted with a point-to-multipoint or broadcast connection, in which many nodes can receive information transmitted by one node. Other examples of point-to-point communications links are leased lines and microwave radio relay.

<span class="mw-page-title-main">Hidden node problem</span> Problem in wireless networking

In wireless networking, the hidden node problem or hidden terminal problem occurs when a node can communicate with a wireless access point (AP), but cannot directly communicate with other nodes that are communicating with that AP. This leads to difficulties in medium access control sublayer since multiple nodes can send data packets to the AP simultaneously, which creates interference at the AP resulting in no packet getting through.

<span class="mw-page-title-main">Ethernet hub</span> Device for interconnecting Ethernet devices

An Ethernet hub, active hub, network hub, repeater hub, multiport repeater, or simply hub is a network hardware device for connecting multiple Ethernet devices together and making them act as a single network segment. It has multiple input/output (I/O) ports, in which a signal introduced at the input of any port appears at the output of every port except the original incoming. A hub works at the physical layer. A repeater hub also participates in collision detection, forwarding a jam signal to all ports if it detects a collision. In addition to standard 8P8C ("RJ45") ports, some hubs may also come with a BNC or an Attachment Unit Interface (AUI) connector to allow connection to legacy 10BASE2 or 10BASE5 network segments.

A duplex communication system is a point-to-point system composed of two or more connected parties or devices that can communicate with one another in both directions. Duplex systems are employed in many communications networks, either to allow for simultaneous communication in both directions between two connected parties or to provide a reverse path for the monitoring and remote adjustment of equipment in the field. There are two types of duplex communication systems: full-duplex (FDX) and half-duplex (HDX).

<span class="mw-page-title-main">Computer network</span> Network that allows computers to share resources and communicate with each other

A computer network is a set of computers sharing resources located on or provided by network nodes. Computers use common communication protocols over digital interconnections to communicate with each other. These interconnections are made up of telecommunication network technologies based on physically wired, optical, and wireless radio-frequency methods that may be arranged in a variety of network topologies.

The 5-4-3 rule, also referred to as the IEEE way, is a design guideline for Ethernet computer networks covering the number of repeaters and segments on shared-medium Ethernet backbones in a tree topology. It means that in a collision domain there should be at most 5 segments tied together with 4 repeaters, with up to 3 mixing segments. Link segments can be 10BASE-T, 10BASE-FL or 10BASE-FB. This rule is also designated the 5-4-3-2-1 rule with there being two link segments and one collision domain.

References

  1. Lammle, Todd (2004). CCNA Study Guide (Fourth ed.). Sybex Inc. ISBN   0-7821-4311-3.