Columnar phase

Last updated

The columnar phase is a class of mesophases in which molecules assemble into cylindrical structures to act as mesogens. Originally, these kinds of liquid crystals were called discotic liquid crystals or bowlic liquid crystals [1] because the columnar structures are composed of flat-shaped discotic or bowl-shaped molecules stacked one-dimensionally. Since recent findings provide a number of columnar liquid crystals consisting of non-discoid mesogens, it is more common now to classify this state of matter and compounds with these properties as columnar liquid crystals.

In physics, a mesophase is a state of matter intermediate between liquid and solid. Gelatin is a common example of a partially ordered structure in a mesophase. Further, biological structures such as the lipid bilayers of cell membranes are examples of mesophases.

Mesogen

Mesogen is a compound that displays liquid crystal properties and "mesogenic" is the term given to a substance that induces the liquid crystalline state.

Liquid crystal State of matter with properties of both conventional liquids and crystals

Liquid crystals (LCs) are a state of matter which has properties between those of conventional liquids and those of solid crystals. For instance, a liquid crystal may flow like a liquid, but its molecules may be oriented in a crystal-like way. There are many different types of liquid-crystal phases, which can be distinguished by their different optical properties. The contrasting areas in the textures correspond to domains where the liquid-crystal molecules are oriented in different directions. Within a domain, however, the molecules are well ordered. LC materials may not always be in a liquid-crystal phase.

Contents

Takuzo Aida and co-workers recently reported cyclic peptides that self-assemble into polar columnar organizations. These materials can be unidirectionally aligned over large areas by application of an external electric field. [2]

Classes

Columnar liquid crystals are grouped by their structural order and the ways of packing of the columns. Nematic columnar liquid crystals have no long-range order and are less organized than other columnar liquid crystals. Other columnar phases with long-range order are classified by their two-dimensional lattices: hexagonal, tetragonal, rectangular, and oblique phases.

The discotic nematic phase includes nematic liquid crystals composed of flat-shaped discotic molecules without long-range order. In this phase, molecules do not form specific columnar assemblies but only float with their short axes in parallel to the director (a unit vector which defines the liquid-crystalline alignment and order).

Current topics of interest

The first discotic liquid crystal was found in 1977 by the Indian researcher Sivaramakrishna Chandrasekhar. This molecule has one central benzene ring surrounded by six alkyl chains. Since then, a large number of discoid mesogenic compounds have been discovered in which triphenylene, porphyrin, phthalocyanine, coronene, and other aromatic molecules are involved. The typical columnar liquid-crystalline molecules have a pi-electron-rich aromatic core attached by flexible alkyl chains. This structure is attracting particular attention for potential molecular electronics in which aromatic parts transport electrons or holes and alkyl chains act as insulating parts. The advantages of liquid-crystalline conductors are their anisotropy, processibility, and self-healing characteristics for structural defects. [3]

Sivaramakrishna Chandrasekhar FNA, FRS was an Indian physicist who won the Royal Medal in 1994. He was the founder-president of the International Liquid Crystal Society.

Benzene Organic chemical compound

Benzene is an organic chemical compound with the chemical formula C6H6. The benzene molecule is composed of six carbon atoms joined in a ring with one hydrogen atom attached to each. As it contains only carbon and hydrogen atoms, benzene is classed as a hydrocarbon.

Alkane acyclic saturated hydrocarbon

In organic chemistry, an alkane, or paraffin (a historical name that also has other meanings), is an acyclic saturated hydrocarbon. In other words, an alkane consists of hydrogen and carbon atoms arranged in a tree structure in which all the carbon–carbon bonds are single. Alkanes have the general chemical formula CnH2n+2. The alkanes range in complexity from the simplest case of methane (CH4), where n = 1 (sometimes called the parent molecule), to arbitrarily large and complex molecules, like pentacontane (C50H102) or 6-ethyl-2-methyl-5-(1-methylethyl) octane, an isomer of tetradecane (C14H30).

Related Research Articles

Amorphous solid crystal system

In condensed matter physics and materials science, an amorphous or non-crystalline solid is a solid that lacks the long-range order that is characteristic of a crystal. In some older books, the term has been used synonymously with glass. Nowadays, "glassy solid" or "amorphous solid" is considered to be the overarching concept, and glass the more special case: Glass is an amorphous solid that exhibits a glass transition. Polymers are often amorphous. Other types of amorphous solids include gels, thin films, and nanostructured materials such as glass.

State of matter Distinct forms that different phases of matter take on

In physics, a state of matter is one of the distinct forms in which matter can exist. Four states of matter are observable in everyday life: solid, liquid, gas, and plasma. Many intermediate states are known to exist, such as liquid crystal, and some states only exist under extreme conditions, such as Bose–Einstein condensates, neutron-degenerate matter, and quark–gluon plasma, which only occur, respectively, in situations of extreme cold, extreme density, and extremely high energy. For a complete list of all exotic states of matter, see the list of states of matter.

A biaxial nematic is a spatially homogeneous liquid crystal with three distinct optical axes. This is to be contrasted to a simple nematic, which has a single preferred axis, around which the system is rotationally symmetric. The symmetry group of a biaxial nematic is i.e. that of a rectangular right parallelepiped, having 3 orthogonal axes and three orthogonal mirror planes. In a frame co-aligned with optical axes the second rank order parameter tensor of a biaxial nematic has the form

Olaf Karthaus is a German polymer chemist and Professor at the Chitose Institute of Science and Technology in Chitose, Hokkaidō, Japan, researching polymer chemistry, thin films, photonics, and nanotechnology.

Triphenylene chemical compound

In chemistry, the organic compound triphenylene is a flat polycyclic aromatic hydrocarbon (PAH) consisting of four fused benzene rings. Triphenylene can be isolated from coal tar. It is also made synthetically by synthesis and trimerization of benzyne. One molecule of triphenylene has delocalized 18-π-electron systems based on a planar structure. It has the molecular formula C
18
H
12
.

In liquid crystals, homeotropic alignment is one of the ways of alignment of liquid crystalline molecules. Homeotropic alignment is the state in which a rod-like liquid crystalline molecule aligns perpendicularly to the substrate. In the polydomain state, the parts also are called homeotropic domains. In contrast, the state in which the molecule aligns to a substance in parallel is called homogeneous alignment.

Surface freezing is the appearance of long-range crystalline order in a near-surface layer of a liquid. The surface freezing effect is opposite to a far more common surface melting, or premelting. Surface Freezing was experimentally discovered in melts of alkanes and related chain molecules in the early 1990s independently by two groups. John Earnshaw and his group used light scattering, which did not allow a determination of the frozen layer's thickness, and whether or not it is laterally ordered. A group led by Ben Ocko, Eric Sirota (Exxon) and Moshe Deutsch discovered independently the same effect, using x-ray surface diffraction which allowed them to show that the frozen layer is a crystalline monolayer, with molecules oriented roughly along the surface normal, and ordered in an hexagonal lattice. A related effect, the existence of a smectic phase at the surface of a nematic liquid bulk was observed in liquid crystals by Jens Als-Nielsen and Peter Pershan in the early 1980s. However, the surface layer there was neither ordered, nor confined to a single layer. Surface freezing has since been found in a wide range of chain molecules and at various interfaces: liquid-air, liquid-solid and liquid-liquid.

Liquid-crystal polymers (LCPs) are a class of aromatic polymers. They are extremely unreactive and inert, and highly resistant to fire.

Martin Schadt Swiss physicist

Martin Schadt is a Swiss physicist and inventor.

Lyotropic liquid crystal

A liquid crystalline mesophase is called lyotropic if formed by dissolving an amphiphilic mesogen in a suitable solvent, under appropriate conditions of concentration, temperature and pressure. A mixture of soap and water is an everyday example of a lyotropic liquid crystal.

A blue phase mode LCD is a liquid crystal display (LCD) technology that uses highly twisted cholesteric phases in a blue phase. It was first proposed in 2007 to obtain a better display of moving images with, for example, frame rates of 100–120 Hz to improve the temporal response of LCDs. This operational mode for LCDs also does not require anisotropic alignment layers and thus theoretically simplifies the LCD manufacturing process.

The glass–liquid transition, or glass transition, is the gradual and reversible transition in amorphous materials, from a hard and relatively brittle "glassy" state into a viscous or rubbery state as the temperature is increased. An amorphous solid that exhibits a glass transition is called a glass. The reverse transition, achieved by supercooling a viscous liquid into the glass state, is called vitrification.

Discotic liquid crystals are mesophases formed from disc-shaped molecules known as "discotic mesogens". These phases are often also referred to as columnar phases. Discotic mesogens are typically composed of an aromatic core surrounded by flexible alkyl chains. The aromatic cores allow charge transfer in the stacking direction through the π conjugate systems. The charge transfer allows the discotic liquid crystals to be electrically semiconductive along the stacking direction. Applications have been focusing on using these systems in photovoltaic devices, organic light emitting diodes (OLED), and molecular wires. Discotics have also been suggested for use in compensation films, for LCD displays.

Hexabenzocoronene chemical compound

Hexa-peri-hexabenzocoronene is a polycyclic aromatic hydrocarbon with the molecular formula C42H18. It consists of a central coronene molecule, with an additional benzene ring fused between each adjacent pair of rings around the periphery. It is sometimes simply called hexabenzocoronene, however, there are other chemicals that share this less-specific name, such as hexa-cata-hexabenzocoronene.

Liquid crystalline elastomers (LCEs) are slightly crosslinked liquid crystalline polymer networks. These materials combine the entropy elasticity of an elastomer with the self-organization of the liquid crystalline phase. In liquid crystalline elastomers, the mesogens can either be part of the polymer chain or they are attached via an alkyl spacer.

Nelamangala Vedavyasachar Madhusudana is an Indian physicist and an emeritus scientist at Raman Research Institute. Known for his research on liquid crystals, Madhusudhana is an elected fellow of Indian Academy of Sciences and Indian National Science Academy. The Council of Scientific and Industrial Research, the apex agency of the Government of India for scientific research, awarded him the Shanti Swarup Bhatnagar Prize for Science and Technology, one of the highest Indian science awards, for his contributions to physical sciences in 1989.

References

  1. Lin, Lei (Lam, Lui) (1987). "Bowlic liquid crytals". Mol. Cryst. Liq. Cryst146: 41-54.
  2. Kohei Sato, Yoshimitsu Itoh, and Takuzo Aida http://pubs.acs.org/doi/abs/10.1021/ja203894r
  3. S. Chandrasekhar, B. K. Sadashiva and K. A. Suresh,"Liquid crystals of disc-like molecules", Pramana, 1977, 9 471.
Oxford University Press Publishing arm of the University of Oxford

Oxford University Press (OUP) is the largest university press in the world, and the second oldest after Cambridge University Press. It is a department of the University of Oxford and is governed by a group of 15 academics appointed by the vice-chancellor known as the delegates of the press. They are headed by the secretary to the delegates, who serves as OUP's chief executive and as its major representative on other university bodies. Oxford University has used a similar system to oversee OUP since the 17th century. The Press is located on Walton Street, opposite Somerville College, in the suburb Jericho.

International Standard Book Number Unique numeric book identifier

The International Standard Book Number (ISBN) is a numeric commercial book identifier which is intended to be unique. Publishers purchase ISBNs from an affiliate of the International ISBN Agency.