Mesogen

Last updated
Mesophase. Figure A.png
Mesophase.

A mesogen is a compound that displays liquid crystal properties. [1] [2] Mesogens can be described as disordered solids or ordered liquids because they arise from a unique state of matter that exhibits both solid- and liquid-like properties called the liquid crystalline state. [1] This liquid crystalline state (LC) is called the mesophase and occurs between the crystalline solid (Cr) state and the isotropic liquid (Iso) state at distinct temperature ranges. [2]

The liquid crystal properties arise because mesogenic compounds are composed of rigid and flexible parts, which help characterize the order and mobility of its structure. [2] The rigid components align mesogen moieties in one direction and have distinctive shapes that are typically found in the form of rod or disk shapes. [2] The flexible segments provide mesogens with mobility because they are usually made up of alkyl chains, which hinder crystallization to a certain degree. [2] The combination of rigid and flexible chains induce structural alignment and fluidity between liquid crystal moieties. [2]

In doing so, varying degrees of order and mobility within mesogens results in different types of liquid crystal phases, Figure 1. The nematic phase (N) is the least ordered and most fluid liquid crystalline state or mesophase that is based on the rigid core of mesogen moieties. [1] [2] The nematic phase leads to long range orientational order and short range positional order of mesogens. [1] [2] The smectic (Sm) and columnar (Col) phases are more ordered and less fluid than their nematic phases and demonstrate long range orientational order of rod-shaped and disk-shaped rigid cores, respectively. [1] [2]

Examples

Figure 1 – Organization of rod-like and disk-like rigid cores in liquid crystal phases of mesogens, where Iso is the isotropic liquid state; N is the nematic phase of the liquid crystal state; SmA is the smectic A phase; SmC is the smectic C phase; and Col is the columnar phase. [2]

Thermotropic mesogens are liquid crystals that are induced by temperature [1] and there are two classical types, which include discotic mesogens and calamitic mesogens. [3]

Discotic mesogens contain a disk-shaped rigid core and tend to organize in columns, forming columnar liquid crystal phases (Col) of long range positional order. [1] [2]

An example of a discotic mesogen type rigid core is a triphenylene based disk molecule, where the hexagonal columnar liquid crystal phase exists between 66 °C (crystal) and 122 °C (isotropic liquid phase). [2]

Calamitic mesogens contain a rod-shaped rigid core and tend to organize in distinctive layers, forming lamellar or smectic liquid crystal phases (Sm) of long range positional order. [1] [2] Low-order smectic phases include smectic A (SmA) and smectic C (SmC) phases, while higher ordered smectic phases include smectic B, I, F, G and H (SmB/I/F/G/H) phases. [3]

An example of a calamitic mesogen type rigid core is a benzyl cyanide based rod molecule, where the smectic A liquid crystal phase exists between the 60 °C (crystal) and 62 °C (isotropic liquid phase) temperature range. [2]

Bent-rod mesogens are special calamitic mesogens that contain a nonlinear rod-shaped or bent- rod shaped rigid core and organize to form "banana-phases". [3] The rigid units of these phases pack in a way so that the highest density and polar order are achieved, typically with the apex of the bent rod pointing in one direction. [2] When a layer of bent-rods points in the same polar direction as its adjacent layers the lamellar organization is known as the smectic PF (SmPF) phase, where the F subscript indicates ferroelectric switching. [2] Smectic PA (SmPA) is the term given to a layer of bent-rods that points in the opposite polar direction as its neighbouring layers, where A stands for antiferroelectic switching. [2]

Other variations of bent-rod liquid crystal phases include: antiferroelectric/ferroelectric smectic C (SmCPA/SmCPF) phases and antiferroelectric/ferroelectric smectic A (SmAPA/SmAPF) phases, which have distinctive tilt and orthogonal modes of lamellar organization. [2]

Related Research Articles

<span class="mw-page-title-main">Liquid crystal</span> State of matter with properties of both conventional liquids and crystals

Liquid crystal (LC) is a state of matter whose properties are between those of conventional liquids and those of solid crystals. For example, a liquid crystal can flow like a liquid, but its molecules may be oriented in a common direction as in solid. There are many types of LC phases, which can be distinguished by their optical properties. The contrasting textures arise due to molecules within one area of material ("domain") being oriented in the same direction but different areas having different orientations. An LC material may not always be in an LC state of matter.

The columnar phase is a class of mesophases in which molecules assemble into cylindrical structures to act as mesogens. Originally, these kinds of liquid crystals were called discotic liquid crystals or bowlic liquid crystals because the columnar structures are composed of flat-shaped discotic or bowl-shaped molecules stacked one-dimensionally. Since recent findings provide a number of columnar liquid crystals consisting of non-discoid mesogens, it is more common now to classify this state of matter and compounds with these properties as columnar liquid crystals.

A biaxial nematic is a spatially homogeneous liquid crystal with three distinct optical axes. This is to be contrasted to a simple nematic, which has a single preferred axis, around which the system is rotationally symmetric. The symmetry group of a biaxial nematic is i.e. that of a rectangular right parallelepiped, having 3 orthogonal axes and three orthogonal mirror planes. In a frame co-aligned with optical axes the second rank order parameter tensor of a biaxial nematic has the form

In liquid crystals, homeotropic alignment is one of the ways of alignment of liquid crystalline molecules. Homeotropic alignment is the state in which a rod-like liquid crystalline molecule aligns perpendicularly to the substrate. In the polydomain state, the parts also are called homeotropic domains. In contrast, the state in which the molecule aligns to a substance in parallel is called homogeneous alignment.

A liquid crystal phase is thermotropic if its order parameter is determined by temperature. At high temperatures, liquid crystals become an isotropic liquid and at low temperatures, they tend to glassify. In a thermotropic crystal, those phase transitions occur only at temperature extremes; the phase is insensitive to concentration.

Liquid crystal polymers (LCPs) are polymers with the property of liquid crystal, usually containing aromatic rings as mesogens. Despite uncrosslinked LCPs, polymeric materials like liquid crystal elastomers (LCEs) and liquid crystal networks (LCNs) can exhibit liquid crystallinity as well. They are both crosslinked LCPs but have different cross link density. They are widely used in the digital display market. In addition, LCPs have unique properties like thermal actuation, anisotropic swelling, and soft elasticity. Therefore, they can be good actuators and sensors. One of the most famous and classical applications for LCPs is Kevlar, a strong but light fiber with wide applications, notably bulletproof vests.  

<span class="mw-page-title-main">Lyotropic liquid crystal</span>

Lyotropic liquid crystals result when fat-loving and water-loving chemical compounds known as amphiphiles dissolve into a solution that behaves both like a liquid and a solid crystal. This liquid crystalline mesophase includes everyday mixtures like soap and water.

<span class="mw-page-title-main">Mesophase</span>

In chemistry and chemical physics, a mesophase or mesomorphic phase is a phase of matter intermediate between solid and liquid. Gelatin is a common example of a partially ordered structure in a mesophase. Further, biological structures such as the lipid bilayers of cell membranes are examples of mesophases. Mesophases with long-range positional order but no orientational order are plastic crystals, whereas those with long-range orientational order but only partial or no positional order are liquid crystals.

A blue phase mode LCD is a liquid crystal display (LCD) technology that uses highly twisted cholesteric phases in a blue phase. It was first proposed in 2007 to obtain a better display of moving images with, for example, frame rates of 100–120 Hz to improve the temporal response of LCDs. This operational mode for LCDs also does not require anisotropic alignment layers and thus theoretically simplifies the LCD manufacturing process.

<span class="mw-page-title-main">Alfred Saupe</span>

Alfred Saupe was a German Physicist born in Badenweiler, who laid groundbreaking work in the area of liquid crystal studies.

<span class="mw-page-title-main">Sivaramakrishna Chandrasekhar</span> Indian physicist (1930-2004)

Sivaramakrishna Chandrasekhar FNA, FRS was an Indian physicist who won the Royal Medal in 1994. He was the founder-president of the International Liquid Crystal Society.

Discotic liquid crystals are mesophases formed from disc-shaped molecules known as "discotic mesogens". These phases are often also referred to as columnar phases. Discotic mesogens are typically composed of an aromatic core surrounded by flexible alkyl chains. The aromatic cores allow charge transfer in the stacking direction through the π conjugate systems. The charge transfer allows the discotic liquid crystals to be electrically semiconductive along the stacking direction. Applications have been focusing on using these systems in photovoltaic devices, organic light emitting diodes (OLED), and molecular wires. Discotics have also been suggested for use in compensation films, for LCD displays.

<span class="mw-page-title-main">4-Cyano-4'-pentylbiphenyl</span> Chemical compound

4-Cyano-4'-pentylbiphenyl is a commonly used nematic liquid crystal with the chemical formula C18H19N. It frequently goes by the common name 5CB. 5CB was first synthesized by George William Gray, Ken Harrison, and J.A. Nash at the University of Hull in 1972 and at the time it was the first member of the cyanobiphenyls. The liquid crystal was discovered after Gray's group received a grant from the UK Ministry of Defence to find a liquid crystal that had liquid crystal phases near room temperature with the specific intention of using them in liquid crystal displays. The molecule is about 20 Å long. The liquid crystal 5CB undergoes a phase transition from a crystalline state to a nematic state at 22.5 °C and it goes from a nematic to an isotropic state at 35.0 °C.

Ammonium perfluorononanoate (APFN) is an anionic surfactant that in water forms liquid crystalline phases. It is the ammonium salt of perfluorononanoic acid.

<span class="mw-page-title-main">Temperature sensitive glass</span>

Temperature sensitive glass is a glass material that reacts to ambient temperatures radiated off of other surfaces, e.g. hands or water. The liquid crystals beneath the glass surface impact color upon temperature. There are three main phases of these crystals: nematic, smectic, and chiral.

<span class="mw-page-title-main">Antal Jákli</span> Hungarian-American physicist (born 1956)

Antal I. "Tony" Jákli is a Hungarian-American physicist and professor of chemical physics at Kent State University. He is known for his work with bent-core, flexoelectric, and ferroelectric liquid crystals.

Liquid crystal elastomers (LCEs) are slightly crosslinked liquid crystalline polymer networks. These materials combine the entropy elasticity of an elastomer with the self-organization of the liquid crystalline phase. In liquid crystalline elastomers, the mesogens can either be part of the polymer chain or are attached via an alkyl spacer.

<span class="mw-page-title-main">N. V. Madhusudana</span> Indian physicist (born 1944)

Nelamangala Vedavyasachar Madhusudana is an Indian physicist and an emeritus scientist at Raman Research Institute. Known for his research on liquid crystals, Madhusudhana is an elected fellow of Indian Academy of Sciences and Indian National Science Academy. The Council of Scientific and Industrial Research, the apex agency of the Government of India for scientific research, awarded him the Shanti Swarup Bhatnagar Prize for Science and Technology, one of the highest Indian science awards, for his contributions to physical sciences in 1989.

Noel Anthony Clark is an American physicist, university professor at the University of Colorado Boulder, and pioneer in the development of electro-optical applications of liquid crystals.

<span class="mw-page-title-main">Yuriy Reznikov</span> Ukrainian physicist

Yuriy Reznikov was a Ukrainian physicist, Head of the Department of Crystals at NASU Institute of Physics and a world-renown expert in the field of liquid crystals. He is known for his work on photoalignment, "giant" optical non-linearity of liquid crystals and nano-colloids.

References

  1. 1 2 3 4 5 6 7 8 Mingos, D. M. P. (1999) Structure and Bonding. Springer. Preface, p. 7. ISBN   978-3662147160
  2. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 Tschierske, Carsten (2011). "Fluorinated Liquid Crystals: Design of Soft Nanostructures and Increased Complexity of Self-Assembly by Perfluorinated Segments". Liquid Crystals. Topics in Current Chemistry. Vol. 318. Berlin, Heidelberg: Springer. pp. 1–108. doi:10.1007/128_2011_267. ISBN   978-3-642-27590-6. PMID   22089090.
  3. 1 2 3 4 Dierking, I. (2001). "Crystallisation of a bent-core liquid crystal mesogen". Physica B. 304 (1–4): 51–59. Bibcode:2001PhyB..304...51D. doi:10.1016/S0921-4526(01)00549-X.