Complex random variable

Last updated

In probability theory and statistics, complex random variables are a generalization of real-valued random variables to complex numbers, i.e. the possible values a complex random variable may take are complex numbers. [1] Complex random variables can always be considered as pairs of real random variables: their real and imaginary parts. Therefore, the distribution of one complex random variable may be interpreted as the joint distribution of two real random variables.

Contents

Some concepts of real random variables have a straightforward generalization to complex random variables—e.g., the definition of the mean of a complex random variable. Other concepts are unique to complex random variables.

Applications of complex random variables are found in digital signal processing, [2] quadrature amplitude modulation and information theory.

Definition

A complex random variable on the probability space is a function such that both its real part and its imaginary part are real random variables on .

Examples

Simple example

Consider a random variable that may take only the three complex values with probabilities as specified in the table. This is a simple example of a complex random variable.

Probability Value

The expectation of this random variable may be simply calculated:

Uniform distribution

Another example of a complex random variable is the uniform distribution over the filled unit circle, i.e. the set . This random variable is an example of a complex random variable for which the probability density function is defined. The density function is shown as the yellow disk and dark blue base in the following figure.

PlotComplexUniformDistributionExample.jpg

Complex normal distribution

Complex Gaussian random variables are often encountered in applications. They are a straightforward generalization of real Gaussian random variables. The following plot shows an example of the distribution of such a variable.

PlotComplexGaussianDistribution.jpg

Cumulative distribution function

The generalization of the cumulative distribution function from real to complex random variables is not obvious because expressions of the form make no sense. However expressions of the form make sense. Therefore, we define the cumulative distribution of a complex random variables via the joint distribution of their real and imaginary parts:

 

 

 

 

(Eq.1)

Probability density function

The probability density function of a complex random variable is defined as , i.e. the value of the density function at a point is defined to be equal to the value of the joint density of the real and imaginary parts of the random variable evaluated at the point .

An equivalent definition is given by where and .

As in the real case the density function may not exist.

Expectation

The expectation of a complex random variable is defined based on the definition of the expectation of a real random variable: [3] :p. 112

 

 

 

 

(Eq.2)

Note that the expectation of a complex random variable does not exist if or does not exist.

If the complex random variable has a probability density function , then the expectation is given by .

If the complex random variable has a probability mass function , then the expectation is given by .

Properties

Whenever the expectation of a complex random variable exists, taking the expectation and complex conjugation commute:

The expected value operator is linear in the sense that

for any complex coefficients even if and are not independent.

Variance and pseudo-variance

The variance is defined in terms of absolute squares as: [3] :117

 

 

 

 

(Eq.3)

Properties

The variance is always a nonnegative real number. It is equal to the sum of the variances of the real and imaginary part of the complex random variable:

The variance of a linear combination of complex random variables may be calculated using the following formula:

Pseudo-variance

The pseudo-variance is a special case of the pseudo-covariance and is defined in terms of ordinary complex squares, given by:

 

 

 

 

(Eq.4)

Unlike the variance of , which is always real and positive, the pseudo-variance of is in general complex.

Covariance matrix of real and imaginary parts

For a general complex random variable, the pair has a covariance matrix of the form:

The matrix is symmetric, so

Its elements equal:

Conversely:

Covariance and pseudo-covariance

The covariance between two complex random variables is defined as [3] :119

 

 

 

 

(Eq.5)

Notice the complex conjugation of the second factor in the definition.

In contrast to real random variables, we also define a pseudo-covariance (also called complementary variance):

 

 

 

 

(Eq.6)

The second order statistics are fully characterized by the covariance and the pseudo-covariance.

Properties

The covariance has the following properties:

Circular symmetry

Circular symmetry of complex random variables is a common assumption used in the field of wireless communication. A typical example of a circular symmetric complex random variable is the complex Gaussian random variable with zero mean and zero pseudo-covariance matrix.

A complex random variable is circularly symmetric if, for any deterministic , the distribution of equals the distribution of .

Properties

By definition, a circularly symmetric complex random variable has

for any .

Thus the expectation of a circularly symmetric complex random variable can only be either zero or undefined.

Additionally,

for any .

Thus the pseudo-variance of a circularly symmetric complex random variable can only be zero.

If and have the same distribution, the phase of must be uniformly distributed over and independent of the amplitude of . [4]

Proper complex random variables

The concept of proper random variables is unique to complex random variables, and has no correspondent concept with real random variables.

A complex random variable is called proper if the following three conditions are all satisfied:

This definition is equivalent to the following conditions. This means that a complex random variable is proper if, and only if:

Theorem  Every circularly symmetric complex random variable with finite variance is proper.

For a proper complex random variable, the covariance matrix of the pair has the following simple form:

.

I.e.:

Cauchy-Schwarz inequality

The Cauchy-Schwarz inequality for complex random variables, which can be derived using the Triangle inequality and Hölder's inequality, is

.

Characteristic function

The characteristic function of a complex random variable is a function defined by

See also

Related Research Articles

<span class="mw-page-title-main">Variance</span> Statistical measure of how far values spread from their average

In probability theory and statistics, variance is the expectation of the squared deviation of a random variable from its population mean or sample mean. Variance is a measure of dispersion, meaning it is a measure of how far a set of numbers is spread out from their average value. Variance has a central role in statistics, where some ideas that use it include descriptive statistics, statistical inference, hypothesis testing, goodness of fit, and Monte Carlo sampling. Variance is an important tool in the sciences, where statistical analysis of data is common. The variance is the square of the standard deviation, the second central moment of a distribution, and the covariance of the random variable with itself, and it is often represented by , , , , or .

In probability theory, the central limit theorem (CLT) establishes that, in many situations, when independent random variables are summed up, their properly normalized sum tends toward a normal distribution even if the original variables themselves are not normally distributed.

<span class="mw-page-title-main">Multivariate random variable</span> Random variable with multiple component dimensions

In probability, and statistics, a multivariate random variable or random vector is a list of mathematical variables each of whose value is unknown, either because the value has not yet occurred or because there is imperfect knowledge of its value. The individual variables in a random vector are grouped together because they are all part of a single mathematical system — often they represent different properties of an individual statistical unit. For example, while a given person has a specific age, height and weight, the representation of these features of an unspecified person from within a group would be a random vector. Normally each element of a random vector is a real number.

<span class="mw-page-title-main">Multivariate normal distribution</span> Generalization of the one-dimensional normal distribution to higher dimensions

In probability theory and statistics, the multivariate normal distribution, multivariate Gaussian distribution, or joint normal distribution is a generalization of the one-dimensional (univariate) normal distribution to higher dimensions. One definition is that a random vector is said to be k-variate normally distributed if every linear combination of its k components has a univariate normal distribution. Its importance derives mainly from the multivariate central limit theorem. The multivariate normal distribution is often used to describe, at least approximately, any set of (possibly) correlated real-valued random variables each of which clusters around a mean value.

<span class="mw-page-title-main">Wiener process</span> Stochastic process generalizing Brownian motion

In mathematics, the Wiener process is a real-valued continuous-time stochastic process named in honor of American mathematician Norbert Wiener for his investigations on the mathematical properties of the one-dimensional Brownian motion. It is often also called Brownian motion due to its historical connection with the physical process of the same name originally observed by Scottish botanist Robert Brown. It is one of the best known Lévy processes and occurs frequently in pure and applied mathematics, economics, quantitative finance, evolutionary biology, and physics.

<span class="mw-page-title-main">Law of large numbers</span> Averages of repeated trials converge to the expected value

In probability theory, the law of large numbers (LLN) is a theorem that describes the result of performing the same experiment a large number of times. According to the law, the average of the results obtained from a large number of trials should be close to the expected value and tends to become closer to the expected value as more trials are performed.

In probability theory and statistics, covariance is a measure of the joint variability of two random variables. If the greater values of one variable mainly correspond with the greater values of the other variable, and the same holds for the lesser values, the covariance is positive. In the opposite case, when the greater values of one variable mainly correspond to the lesser values of the other,, the covariance is negative. The sign of the covariance therefore shows the tendency in the linear relationship between the variables. The magnitude of the covariance is not easy to interpret because it is not normalized and hence depends on the magnitudes of the variables. The normalized version of the covariance, the correlation coefficient, however, shows by its magnitude the strength of the linear relation.

In probability theory and statistics, two real-valued random variables, , , are said to be uncorrelated if their covariance, , is zero. If two variables are uncorrelated, there is no linear relationship between them.

<span class="mw-page-title-main">Covariance matrix</span> Measure of covariance of components of a random vector

In probability theory and statistics, a covariance matrix is a square matrix giving the covariance between each pair of elements of a given random vector. Any covariance matrix is symmetric and positive semi-definite and its main diagonal contains variances.

<span class="mw-page-title-main">Kriging</span> Method of interpolation

In statistics, originally in geostatistics, kriging or Kriging, also known as Gaussian process regression, is a method of interpolation based on Gaussian process governed by prior covariances. Under suitable assumptions of the prior, kriging gives the best linear unbiased prediction (BLUP) at unsampled locations. Interpolating methods based on other criteria such as smoothness may not yield the BLUP. The method is widely used in the domain of spatial analysis and computer experiments. The technique is also known as Wiener–Kolmogorov prediction, after Norbert Wiener and Andrey Kolmogorov.

In estimation theory and statistics, the Cramér–Rao bound (CRB) expresses a lower bound on the variance of unbiased estimators of a deterministic parameter, the variance of any such estimator is at least as high as the inverse of the Fisher information. Equivalently, it expresses an upper bound on the precision of unbiased estimators: the precision of any such estimator is at most the Fisher information. The result is named in honor of Harald Cramér and C. R. Rao, but has independently also been derived by Maurice Fréchet, Georges Darmois, as well as Alexander Aitken and Harold Silverstone.

The algebra of random variables in statistics, provides rules for the symbolic manipulation of random variables, while avoiding delving too deeply into the mathematically sophisticated ideas of probability theory. Its symbolism allows the treatment of sums, products, ratios and general functions of random variables, as well as dealing with operations such as finding the probability distributions and the expectations, variances and covariances of such combinations.

In probability theory, although simple examples illustrate that linear uncorrelatedness of two random variables does not in general imply their independence, it is sometimes mistakenly thought that it does imply that when the two random variables are normally distributed. This article demonstrates that assumption of normal distributions does not have that consequence, although the multivariate normal distribution, including the bivariate normal distribution, does.

In probability theory and statistics, partial correlation measures the degree of association between two random variables, with the effect of a set of controlling random variables removed. When determining the numerical relationship between two variables of interest, using their correlation coefficient will give misleading results if there is another confounding variable that is numerically related to both variables of interest. This misleading information can be avoided by controlling for the confounding variable, which is done by computing the partial correlation coefficient. This is precisely the motivation for including other right-side variables in a multiple regression; but while multiple regression gives unbiased results for the effect size, it does not give a numerical value of a measure of the strength of the relationship between the two variables of interest.

<span class="mw-page-title-main">Truncated normal distribution</span>

In probability and statistics, the truncated normal distribution is the probability distribution derived from that of a normally distributed random variable by bounding the random variable from either below or above. The truncated normal distribution has wide applications in statistics and econometrics.

In probability theory, the family of complex normal distributions, denoted or , characterizes complex random variables whose real and imaginary parts are jointly normal. The complex normal family has three parameters: location parameter μ, covariance matrix , and the relation matrix . The standard complex normal is the univariate distribution with , , and .

<span class="mw-page-title-main">Distance correlation</span>

In statistics and in probability theory, distance correlation or distance covariance is a measure of dependence between two paired random vectors of arbitrary, not necessarily equal, dimension. The population distance correlation coefficient is zero if and only if the random vectors are independent. Thus, distance correlation measures both linear and nonlinear association between two random variables or random vectors. This is in contrast to Pearson's correlation, which can only detect linear association between two random variables.

In probability theory, concentration inequalities provide bounds on how a random variable deviates from some value. The law of large numbers of classical probability theory states that sums of independent random variables are, under very mild conditions, close to their expectation with a large probability. Such sums are the most basic examples of random variables concentrated around their mean. Recent results show that such behavior is shared by other functions of independent random variables.

In statistics, the variance function is a smooth function which depicts the variance of a random quantity as a function of its mean. The variance function is a measure of heteroscedasticity and plays a large role in many settings of statistical modelling. It is a main ingredient in the generalized linear model framework and a tool used in non-parametric regression, semiparametric regression and functional data analysis. In parametric modeling, variance functions take on a parametric form and explicitly describe the relationship between the variance and the mean of a random quantity. In a non-parametric setting, the variance function is assumed to be a smooth function.

<span class="mw-page-title-main">Complex random vector</span>

In probability theory and statistics, a complex random vector is typically a tuple of complex-valued random variables, and generally is a random variable taking values in a vector space over the field of complex numbers. If are complex-valued random variables, then the n-tuple is a complex random vector. Complex random variables can always be considered as pairs of real random vectors: their real and imaginary parts.

References

  1. Eriksson, Jan; Ollila, Esa; Koivunen, Visa (2009). "Statistics for complex random variables revisited".{{cite journal}}: Cite journal requires |journal= (help)
  2. Lapidoth, A. (2009). A Foundation in Digital Communication. Cambridge University Press. ISBN   9780521193955.
  3. 1 2 3 Park,Kun Il (2018). Fundamentals of Probability and Stochastic Processes with Applications to Communications. Springer. ISBN   978-3-319-68074-3.
  4. Peter J. Schreier, Louis L. Scharf (2011). Statistical Signal Processing of Complex-Valued Data. Cambridge University Press. ISBN   9780511815911.