Conductive ink

Last updated

Conductive ink is an ink that results in a printed object which conducts electricity. It is typically created by infusing graphite or other conductive materials into ink. [1] There has been a growing interest in replacing metallic materials with nanomaterials due to the emergence of nanotechnology. Among other nanomaterials, graphene, and carbon nanotube-based conductive ink are gaining immense popularity due to their high electrical conductivity and high surface area. [2] Recently, more attention has been paid on using eco-friendly conductive ink using water as a solvent as compared to organic solvents since they are harmful to the environment. However, the high surface tension of water prevents its applicability. Various natural and synthetic surfactants are now used to reduce the surface tension of water and ensure uniform nanomaterials dispersibility for smooth printing and wide application. [3] Although graphene oxide inks are eco-friendly and can be produced in bulk quantities, they are insulating in nature which needs an additional step of reduction using reducing ink is required to restore the electrical properties. [4] The external reduction process is not suitable for large scale continuous manufacturing of electronic devices. Hence an in-situ reduction process also known as reactive inkjet printing has been developed by various scientists. [5] [6] In the in-situ reduction process the reducing inks are printed on top of the GO printed patterns in order to carry out the reduction process on the substrate. [7]

Silver inks have multiple uses today including printing RFID tags as used in modern transit tickets, they can be used to improvise or repair circuits on printed circuit boards. Computer keyboards contain membranes with printed circuits that sense when a key is pressed. Windshield defrosters consisting of resistive traces applied to the glass are also printed.

See also

Related Research Articles

<span class="mw-page-title-main">Chemical vapor deposition</span> Method used to apply surface coatings

Chemical vapor deposition (CVD) is a vacuum deposition method used to produce high-quality, and high-performance, solid materials. The process is often used in the semiconductor industry to produce thin films.

<span class="mw-page-title-main">Inkjet printing</span> Type of computer printing

Inkjet printing is a type of computer printing that recreates a digital image by propelling droplets of ink onto paper and plastic substrates. Inkjet printers were the most commonly used type of printer in 2008, and range from small inexpensive consumer models to expensive professional machines. By 2019, laser printers outsold inkjet printers by nearly a 2:1 ratio, 9.6% vs 5.1% of all computer peripherals.

<span class="mw-page-title-main">Polyaniline</span> Conducting semi-flexible rod polymer

Polyaniline (PANI) is a conducting polymer and organic semiconductor of the semi-flexible rod polymer family. The compound has been of interest since the 1980s because of its electrical conductivity and mechanical properties. Polyaniline is one of the most studied conducting polymers.

<span class="mw-page-title-main">Graphene</span> Hexagonal lattice made of carbon atoms

Graphene is an allotrope of carbon consisting of a single layer of atoms arranged in a hexagonal lattice nanostructure. The name is derived from "graphite" and the suffix -ene, reflecting the fact that the graphite allotrope of carbon contains numerous double bonds.

<span class="mw-page-title-main">PEDOT:PSS</span> Polymer

poly(3,4-ethylenedioxythiophene) polystyrene sulfonate (PEDOT:PSS) is a polymer mixture of two ionomers. One component in this mixture is made up of polystyrene sulfonate which is a sulfonated polystyrene. Part of the sulfonyl groups are deprotonated and carry a negative charge. The other component poly(3,4-ethylenedioxythiophene) (PEDOT) is a conjugated polymer and carries positive charges and is based on polythiophene. Together the charged macromolecules form a macromolecular salt.

<span class="mw-page-title-main">Wide-format printer</span> Computer-controlled printing machine

Wide format printers are generally accepted to be any computer-controlled printing machines (printers) that support a maximum print roll width of between 18 and 100 inches. Printers with capacities over 100 in wide are considered super-wide or grand format. Wide-format printers are used to print banners, posters, trade show graphics, wallpaper, murals, backlit film (duratrans), vehicle image wraps, electronic circuit schematics, architectural drawings, construction plans, backdrops for theatrical and media sets, and any other large format artwork or signage. Wide-format printers usually employ some variant of inkjet or toner-based technology to produce the printed image; and are more economical than other print methods such as screen printing for most short-run print projects, depending on print size, run length, and the type of substrate or print medium. Wide-format printers are usually designed for printing onto a roll of print media that feeds incrementally during the print process, rather than onto individual sheets.

Ink jet material deposition is an emerging manufacturing technique in which inkjet technology is used to deposit materials on substrates. The technique aims to eliminate fixed costs of production and reduce the amount of materials used.

<span class="mw-page-title-main">Printed electronics</span> Electronic devices created by various printing methods

Printed electronics is a set of printing methods used to create electrical devices on various substrates. Printing typically uses common printing equipment suitable for defining patterns on material, such as screen printing, flexography, gravure, offset lithography, and inkjet. By electronic-industry standards, these are low-cost processes. Electrically functional electronic or optical inks are deposited on the substrate, creating active or passive devices, such as thin film transistors; capacitors; coils; resistors. Some researchers expect printed electronics to facilitate widespread, very low-cost, low-performance electronics for applications such as flexible displays, smart labels, decorative and animated posters, and active clothing that do not require high performance.

<span class="mw-page-title-main">Nanobatteries</span> Type of battery

Nanobatteries are fabricated batteries employing technology at the nanoscale, particles that measure less than 100 nanometers or 10−7 meters. These batteries may be nano in size or may use nanotechnology in a macro scale battery. Nanoscale batteries can be combined to function as a macrobattery such as within a nanopore battery.

As the world's energy demand continues to grow, the development of more efficient and sustainable technologies for generating and storing energy is becoming increasingly important. According to Dr. Wade Adams from Rice University, energy will be the most pressing problem facing humanity in the next 50 years and nanotechnology has potential to solve this issue. Nanotechnology, a relatively new field of science and engineering, has shown promise to have a significant impact on the energy industry. Nanotechnology is defined as any technology that contains particles with one dimension under 100 nanometers in length. For scale, a single virus particle is about 100 nanometers wide.

<span class="mw-page-title-main">Conductive textile</span> Fabric which can conduct electricity

A conductive textile is a fabric which can conduct electricity. Conductive textiles known as lamé are made with guipé thread or yarn that is conductive because it is composed of metallic fibers wrapped around a non-metallic core or has a metallic coating. A different way of achieving conductivity is to weave metallic strands into the textile.

<span class="mw-page-title-main">Paper</span> Material for writing, printing, etc.

Paper is a thin sheet material produced by mechanically or chemically processing cellulose fibres derived from wood, rags, grasses, or other vegetable sources in water, draining the water through a fine mesh leaving the fibre evenly distributed on the surface, followed by pressing and drying. Although paper was originally made in single sheets by hand, almost all is now made on large machines—some making reels 10 metres wide, running at 2,000 metres per minute and up to 600,000 tonnes a year. It is a versatile material with many uses, including printing, painting, graphics, signage, design, packaging, decorating, writing, and cleaning. It may also be used as filter paper, wallpaper, book endpaper, conservation paper, laminated worktops, toilet tissue, currency, and security paper, or in a number of industrial and construction processes.

<span class="mw-page-title-main">Ultrasonic nozzle</span> Type of spray nozzle

Ultrasonic nozzles are a type of spray nozzle that use high frequency vibrations produced by piezoelectric transducers acting upon the nozzle tip that create capillary waves in a liquid film. Once the amplitude of the capillary waves reaches a critical height, they become too tall to support themselves and tiny droplets fall off the tip of each wave resulting in atomization.

<span class="mw-page-title-main">Graphite oxide</span> Compound of carbon, oxygen, and hydrogen

Graphite oxide (GO), formerly called graphitic oxide or graphitic acid, is a compound of carbon, oxygen, and hydrogen in variable ratios, obtained by treating graphite with strong oxidizers and acids for resolving of extra metals. The maximally oxidized bulk product is a yellow solid with C:O ratio between 2.1 and 2.9, that retains the layer structure of graphite but with a much larger and irregular spacing.

Green textiles are fabrics or fibres produced to replace environmentally harmful textiles and minimise the ecological impact. Green textiles are part of the sustainable fashion and eco-friendly trends, providing alternatives to the otherwise pollution-heavy products of conventional textile industry, which is deemed the most ecologically damaging industry.

Potential graphene applications include lightweight, thin, and flexible electric/photonics circuits, solar cells, and various medical, chemical and industrial processes enhanced or enabled by the use of new graphene materials.

<span class="mw-page-title-main">Chemiresistor</span> Material with changing electrical resistance according to its surroundings

A chemiresistor is a material that changes its electrical resistance in response to changes in the nearby chemical environment. Chemiresistors are a class of chemical sensors that rely on the direct chemical interaction between the sensing material and the analyte. The sensing material and the analyte can interact by covalent bonding, hydrogen bonding, or molecular recognition. Several different materials have chemiresistor properties: semiconducting metal oxides, some conductive polymers, and nanomaterials like graphene, carbon nanotubes and nanoparticles. Typically these materials are used as partially selective sensors in devices like electronic tongues or electronic noses.

<span class="mw-page-title-main">Inkjet technology</span>

Inkjet technology originally was invented for depositing aqueous inks on paper in 'selective' positions based on the ink properties only. Inkjet nozzles and inks were designed together and the inkjet performance was based on a design. It was used as a data recorder in the early 1950s, later in the 1950s co-solvent-based inks in the publishing industry were seen for text and images, then solvent-based inks appeared in industrial marking on specialized surfaces and in the 1990's phase change or hot-melt ink has become a popular with images and digital fabrication of electronic and mechanical devices, especially jewelry. Although the terms "jetting", "inkjet technology" and "inkjet printing", are commonly used interchangeably, inkjet printing usually refers to the publishing industry, used for printing graphical content, while industrial jetting usually refers to general purpose fabrication via material particle deposition.

Tawfique Hasan is a Bangladeshi scientist who is Professor of Nanomaterials at the University of Cambridge. He leads the nanoengineering group in the Cambridge graphene centre and serves as deputy head of division B in the Department of Engineering, University of Cambridge.

Biofoams are biological or biologically derived foams, making up lightweight and porous cellular solids. A relatively new term, its use in academia began in the 1980s in relation to the scum that formed on activated sludge plants.

References

  1. Steven Osborn (September 17, 2013). Makers at Work: Folks Reinventing the World One Object Or Idea at a Time. Apress. pp. 168–. ISBN   978-1-4302-5992-3.
  2. Orts Mercadillo, Vicente; Chan, Kai Chio; Caironi, Mario; Athanassiou, Athanassia; Kinloch, Ian A.; Bissett, Mark; Cataldi, Pietro (September 19, 2022). "Electrically Conductive 2D Material Coatings for Flexible and Stretchable Electronics: A Comparative Review of Graphenes and MXenes". Advanced Functional Materials. 32 (38): 2204772. arXiv: 2207.06776 . doi:10.1002/adfm.202204772. S2CID   250526258.
  3. Khan, Junaid; Mariatti, M. (November 20, 2022). "Effect of natural surfactant on the performance of reduced graphene oxide conductive ink". Journal of Cleaner Production. 376: 134254. doi:10.1016/j.jclepro.2022.134254. ISSN   0959-6526. S2CID   252524219.
  4. Khan, Junaid; Jaafar, Mariatti (November 2021). "Reduction efficiencies of natural substances for reduced graphene oxide synthesis". Journal of Materials Science. 56 (33): 18477–18492. doi:10.1007/s10853-021-06492-y.
  5. Khan, Junaid; Mariatti, M; Zubir, Syazana A; Rusli, Arjulizan; Manaf, Asrulnizam Abd; Khirotdin, Rd Khairilhijra (January 29, 2024). "Eco-friendly alkali lignin-assisted water-based graphene oxide ink and its application as a resistive temperature sensor". Nanotechnology. 35 (5): 055301. doi:10.1088/1361-6528/ad06d4.
  6. Khan, Junaid; Mariatti, M; Zubir, Syazana A; Rusli, Arjulizan; Manaf, Asrulnizam Abd; Khirotdin, Rd Khairilhijra (January 29, 2024). "Eco-friendly alkali lignin-assisted water-based graphene oxide ink and its application as a resistive temperature sensor". Nanotetopchnology. 35 (5): 055301. doi:10.1088/1361-6528/ad06d4.
  7. Lv, Songwei; Ye, Siyuan; Chen, Chunling; Zhang, Yi; Wu, Yanhong; Wang, Yiqing; Tang, Runli; De Souza, M. M.; Liu, Xuqing; Zhao, Xiubo (2021). "Reactive inkjet printing of graphene based flexible circuits and radio frequency antennas". Journal of Materials Chemistry C. 9 (38): 13182–13192. doi: 10.1039/D1TC02352G .