Conosa

Last updated

Conosa
Dictyostelium discoideum 02.jpg
Dictyostelium discoideum
Scientific classification OOjs UI icon edit-ltr.svg
Domain: Eukaryota
Phylum: Amoebozoa
Clade: Evosea
Subphylum: Conosa
Cavalier-Smith, 1998
Infraphyla

Conosa is a grouping of Amoebozoa. It is subdivided into three groups: Archamoeba, Variosea and Mycetozoa. [1] [2]

Contents

In some classifications, the mycetozoan Myxogastria and Dictyostelia are united in Macromycetozoa.[ citation needed ]

Conosa includes the species Dictyostelium discoideum, a social amoeba, and Entamoeba histolytica , a human pathogen, among others. [3]

Conosa are morphologically defined by a conical microtubular structure, [1] [4] [5] and have been found to be monophyletic. [2] [4]

Characteristics

The Conosa group was first proposed by Thomas Cavalier-Smith in 1998 as a subphylum of Amoebozoa. [1] Cavalier-Smith originally separated this group into 2 infraphyla: Archamoebae and Mycetozoa. [1] Notable characteristics of these two groups are that Mycetozoa are free living, while Archamoebae are amitochondrial. [3] This clade is morphologically defined by their complex microtubular skeleton that forms a partial or complete cone. [4] [5] They have a monolayer of microtubules that surround at least some of the anterior end of the cell and diverge into a cone shape towards the nucleus at the posterior end. [1] [5] This cone of microtubules usually starts at a single centriole and extends towards the nucleus. [1] They also have a lateral microtubular ribbon towards the cell surface. [1] Conosa can exist as aggregate aerobes with mitochondria and also as solitary anaerobes with no mitochondria or peroxisomes. [1] There are mitochondriate and amitochondriate members, as well as free living and parasitic representatives. [2] Mitochondria reduction could be a result of transitions to a parasitic lifestyle, [2] as is seen in the amitochondral human parasite Entamoeba histolytica. [3]

Phylogeny

Conosa are separated from Lobosa, the other Amoebozoa subphylum, by morphological characteristics and genomic differences. Conosa have both amoeboid and flagellate forms or stages and more pointed pseudopodia with branches. In contrast, Lobosa are entirely amoeboid with broad pseudopodia. [4] Conosa's flagella are artifacts of their ancestral conditions and are seen in trophic and swarm cell phases. [4] Flagellate Conosa have a cone-shaped microtubular skeleton, and non-ciliate forms contain extensive microtubes in the cytoplasm, both of which are not seen in Lobosa. [4]

While morphological characteristics like pseudopodia and body shape, flagella, and cytoplasm properties have not been regarded as convincing taxonomic suggestions, [2] emerging sequencing data is being used to support Conosa’s monophyly. A study using several hundred phylogenetic markers of 30 species found Conosa to be monophyletic as representatives of Mycetozoa, Entamoebidae, and Pelobionta grouped together using several amino acid sequencing analysis methods. [2] The monophyly of Conosa and the Archamoebea infraphyla was also supported by cDNA sequencing of 17 Amoebozoans. [4] However, the monophyly of Conosa is not entirely supported. For example, another study using 7 protein coding genes did not find Conosa to be monophyletic due to members of Lobosa sharing a phylogenetic branch with the Conosan lineage Variosea. [5] This same study did find all three Conosan lineages to be monophyletic. [5]

Amoebozoa
Discosea

Flabellinia

Centramoebia

Tevosa
Tubulinea

Corycidia

Echinamoebia

Elardia

Evosea

Cutosea

Conosa

Archamoebea

Semiconosia

Variosea

Mycetozoa

Dictyostelea

Ceratiomyxea

Myxogastrea

Opisthokonta

Evolution

The last common ancestor of Conosa was likely an aerobic protist with anterior and recurrent flagellum. [5] It likely had mitochondria, while mitochondrial reduction has resulted in both mitochondriate and amitochondriate members today. [2] The ancestral biflagellate condition is seen in some extant Conosa forms. [4] In some Archamoebae, the posterior flagella and its related cytoskeleton has been lost, and others have lost the entire flagellar system. [5] The conical microtubular skeleton convergently evolved in Archamoebae and Variosea, but not in Mycetozoa. [4] A study of the complete proteomic content of 23 eukaryotic genomes found that representative members of Mycetozoa and Archamoebae do share a common ancestor, and their divergence occurred almost as long ago as the split of fungi and animals. [3]

Related Research Articles

<span class="mw-page-title-main">Pseudopodia</span> False leg found on slime molds, archaea, protozoans, leukocytes and certain bacteria

A pseudopod or pseudopodium is a temporary arm-like projection of a eukaryotic cell membrane that is emerged in the direction of movement. Filled with cytoplasm, pseudopodia primarily consist of actin filaments and may also contain microtubules and intermediate filaments. Pseudopods are used for motility and ingestion. They are often found in amoebas.

<span class="mw-page-title-main">Excavata</span> Supergroup of unicellular organisms belonging to the domain Eukaryota

Excavata is an extensive and diverse but paraphyletic group of unicellular Eukaryota. The group was first suggested by Simpson and Patterson in 1999 and the name latinized and assigned a rank by Thomas Cavalier-Smith in 2002. It contains a variety of free-living and symbiotic protists, and includes some important parasites of humans such as Giardia and Trichomonas. Excavates were formerly considered to be included in the now obsolete Protista kingdom. They were distinguished from other lineages based on electron-microscopic information about how the cells are arranged. They are considered to be a basal flagellate lineage.

<span class="mw-page-title-main">Amoebozoa</span> Phylum of protozoans

Amoebozoa is a major taxonomic group containing about 2,400 described species of amoeboid protists, often possessing blunt, fingerlike, lobose pseudopods and tubular mitochondrial cristae. In traditional classification schemes, Amoebozoa is usually ranked as a phylum within either the kingdom Protista or the kingdom Protozoa. In the classification favored by the International Society of Protistologists, it is retained as an unranked "supergroup" within Eukaryota. Molecular genetic analysis supports Amoebozoa as a monophyletic clade. Modern studies of eukaryotic phylogenetic trees identify it as the sister group to Opisthokonta, another major clade which contains both fungi and animals as well as several other clades comprising some 300 species of unicellular eukaryotes. Amoebozoa and Opisthokonta are sometimes grouped together in a high-level taxon, variously named Unikonta, Amorphea or Opimoda.

<span class="mw-page-title-main">Opisthokont</span> Group of eukaryotes which includes animals and fungi, among other groups

The opisthokonts are a broad group of eukaryotes, including both the animal and fungus kingdoms. The opisthokonts, previously called the "Fungi/Metazoa group", are generally recognized as a clade. Opisthokonts together with Apusomonadida and Breviata comprise the larger clade Obazoa.

In Biology, Archezoa is a term that has been introduced by several authors to refer to a group of organisms. Authors include Josef Anton Maximilian Perty, Ernst Haeckel and in the 20th century by Thomas Cavalier-Smith (1942–2021) in his classification system. Each author used the name to refer to different arrays of organisms. This reuse by later authors of the same taxon name for different groups of organisms is widely criticized in taxonomy because the inclusion of the name in a sentence does not make sense unless the particular usage is specified. All uses of 'Archezoa' are now obsolete.

<i>Naegleria</i> Genus of protists

Naegleria is a free living amoebae protist genus consisting of 47 described species often found in warm aquatic environments as well as soil habitats worldwide. It has three life cycle forms: the amoeboid stage, the cyst stage, and the flagellated stage, and has been routinely studied for its ease in change from amoeboid to flagellated stages. The Naegleria genera became famous when Naegleria fowleri, a human pathogenic strain and the causative agent of primary amoebic meningoencephalitis (PAM), was discovered in 1965. Most species in the genus, however, are nonpathogenic, meaning they do not cause disease.

<span class="mw-page-title-main">Rhizaria</span> Infrakingdom of protists

The Rhizaria are a diverse and species-rich supergroup of mostly unicellular eukaryotes. Except for the Chlorarachniophytes and three species in the genus Paulinella in the phylum Cercozoa, they are all non-photosynthethic, but many foraminifera and radiolaria have a symbiotic relationship with unicellular algae. A multicellular form, Guttulinopsis vulgaris, a cellular slime mold, has been described. This group was used by Cavalier-Smith in 2002, although the term "Rhizaria" had been long used for clades within the currently recognized taxon. Being described mainly from rDNA sequences, they vary considerably in form, having no clear morphological distinctive characters (synapomorphies), but for the most part they are amoeboids with filose, reticulose, or microtubule-supported pseudopods. In the absence of an apomorphy, the group is ill-defined, and its composition has been very fluid. Some Rhizaria possess mineral exoskeletons, which are in different clades within Rhizaria made out of opal, celestite, or calcite. Certain species can attain sizes of more than a centimeter with some species being able to form cylindrical colonies approximately 1 cm in diameter and greater than 1 m in length. They feed by capturing and engulfing prey with the extensions of their pseudopodia; forms that are symbiotic with unicellular algae contribute significantly to the total primary production of the ocean.

<span class="mw-page-title-main">Metamonad</span> Phylum of excavate protists

The metamonads are a large group of flagellate amitochondriate microscopic eukaryotes. Their composition is not entirely settled, but they include the retortamonads, diplomonads, and possibly the parabasalids and oxymonads as well. These four groups are all anaerobic, occurring mostly as symbiotes or parasites of animals, as is the case with Giardia lamblia which causes diarrhea in mammals.

<i>Pelomyxa</i> Genus of flagellar amoeboids

Pelomyxa is a genus of giant flagellar amoebae, usually 500–800 μm but occasionally up to 5 mm in length, found in anaerobic or microaerobic bottom sediments of stagnant freshwater ponds or slow-moving streams.

<span class="mw-page-title-main">Lobosa</span> Phylum of protozoans

Lobosa is a taxonomic group of amoebae in the phylum Amoebozoa. Most lobosans possess broad, bluntly rounded pseudopods, although one genus in the group, the recently discovered Sapocribrum, has slender and threadlike (filose) pseudopodia. In current classification schemes, Lobosa is a subphylum, composed mainly of amoebae that have lobose pseudopods but lack cilia or flagella.

<span class="mw-page-title-main">Amorphea</span> Members of the Unikonta, a taxonomic group proposed by Thomas Cavalier-Smith

Amorphea is a taxonomic supergroup that includes the basal Amoebozoa and Obazoa. That latter contains the Opisthokonta, which includes the Fungi, Animals and the Choanomonada, or Choanoflagellates. The taxonomic affinities of the members of this clade were originally described and proposed by Thomas Cavalier-Smith in 2002.

<span class="mw-page-title-main">Archamoebae</span> Phylum of protists

The Archamoebae are a group of protists originally thought to have evolved before the acquisition of mitochondria by eukaryotes. They include genera that are internal parasites or commensals of animals. A few species are human pathogens, causing diseases such as amoebic dysentery. The other genera of archamoebae live in freshwater habitats and are unusual among amoebae in possessing flagella. Most have a single nucleus and flagellum, but the giant amoeba Pelomyxa has many of each.

<span class="mw-page-title-main">Eumycetozoa</span> Taxonomic group of slime molds

Eumycetozoa, or true slime molds, is a diverse group of protists that behave as slime molds and develop fruiting bodies, either as sorocarps or as sporocarps. It is a monophyletic group or clade within the phylum Amoebozoa that contains the myxogastrids, dictyostelids and protosporangiids.

<span class="mw-page-title-main">Corticata</span> Type of plant

Corticata, in the classification of eukaryotes, is a clade suggested by Thomas Cavalier-Smith to encompass the eukaryote supergroups of the following two groups:

<i>Mastigamoeba</i> Genus of flagellar amoeboids

Mastigamoeba is a genus of pelobionts, and treated by some as members of the Archamoebae group of protists. Mastigamoeba are characterized as anaerobic, amitochondriate organisms that are polymorphic. Their dominant life cycle stage is as an amoeboid flagellate. Species are typically free living, though endobiotic species have been described.

<i>Collodictyon</i> Genus of algae

Collodictyon is a genus of single-celled, omnivorous eukaryotes belonging to the collodictyonids, also known as diphylleids. Due to their mix of cellular components, Collodictyonids do not belong to any well-known kingdom-level grouping of that domain and this makes them distinctive from other families. Recent research places them in a new 'supergroup' together with rigifilids and Mantamonas, with the so-far informal name 'CRuMs'.

<span class="mw-page-title-main">Amoeba</span> Polyphyletic group of unicellular eukaryotes with the ability to shapeshift

An amoeba, often called an amoeboid, is a type of cell or unicellular organism with the ability to alter its shape, primarily by extending and retracting pseudopods. Amoebae do not form a single taxonomic group; instead, they are found in every major lineage of eukaryotic organisms. Amoeboid cells occur not only among the protozoa, but also in fungi, algae, and animals.

<span class="mw-page-title-main">Varisulca</span> Proposed phylum of protists

Varisulca was a proposed basal Podiate taxon. It encompassed several lineages of heterotrophic protists, most notably the ancyromonads (planomonads), collodictyonids (diphylleids), rigifilids and mantamonadids. Recent evidence suggests that the latter three are closely related to each other, forming a clade called CRuMs, but that this is unlikely to be specifically related to ancyromonads

Cutosea is a small group of marine amoeboid protists proposed in 2016. It is a monotypic class of Amoebozoa containing the order Squamocutida. Cutosean organisms are characterized by a cell coat of microscales separated from the cell membrane. Three genera, Armaparvus, Sapocribrum and Squamamoeba, belong to this group, distributed in two families.

<span class="mw-page-title-main">Evosea</span> Group of amoebae

Evosea is a diverse clade of amoeboid protists discovered through molecular analyses. Along with Tubulinea and Discosea, Evosea is one of the three major groups within Amoebozoa, an important clade of eukaryotic organisms. It contains unicellular organisms that display a wide variety of life cycles and cell shapes, including amoebae, flagellates and different kinds of slime molds.

References

  1. 1 2 3 4 5 6 7 8 Cavalier-Smith T (August 1998). "A revised six-kingdom system of life". Biol Rev Camb Philos Soc. 73 (3): 203–66. doi:10.1111/j.1469-185X.1998.tb00030.x. PMID   9809012. S2CID   6557779. Archived from the original on 2012-12-05.
  2. 1 2 3 4 5 6 7 Bapteste E, Brinkmann H, Lee JA, et al. (February 2002). "The analysis of 100 genes supports the grouping of three highly divergent amoebae: Dictyostelium, Entamoeba, and Mastigamoeba". Proc. Natl. Acad. Sci. U.S.A. 99 (3): 1414–9. Bibcode:2002PNAS...99.1414B. doi: 10.1073/pnas.032662799 . PMC   122205 . PMID   11830664.
  3. 1 2 3 4 Song J, Xu Q, Olsen R, et al. (December 2005). "Comparing the Dictyostelium and Entamoeba genomes reveals an ancient split in the Conosa lineage". PLOS Comput. Biol. 1 (7): e71. Bibcode:2005PLSCB...1...71S. doi: 10.1371/journal.pcbi.0010071 . PMC   1314882 . PMID   16362072.
  4. 1 2 3 4 5 6 7 8 9 Cavalier-Smith, Thomas; Fiore-Donno, Anna Maria; Chao, Ema; Kudryavtsev, Alexander; Berney, Cédric; Snell, Elizabeth A.; Lewis, Rhodri (February 2015). "Multigene phylogeny resolves deep branching of Amoebozoa". Molecular Phylogenetics and Evolution. 83: 293–304. doi: 10.1016/j.ympev.2014.08.011 .
  5. 1 2 3 4 5 6 7 Pánek, Tomáš; Zadrobílková, Eliška; Walker, Giselle; Brown, Matthew W.; Gentekaki, Eleni; Hroudová, Miluše; Kang, Seungho; Roger, Andrew J.; Tice, Alexander K.; Vlček, Čestmír; Čepička, Ivan (2016-05-01). "First multigene analysis of Archamoebae (Amoebozoa: Conosa) robustly reveals its phylogeny and shows that Entamoebidae represents a deep lineage of the group". Molecular Phylogenetics and Evolution. 98: 41–51. doi: 10.1016/j.ympev.2016.01.011 . ISSN   1055-7903.