Credibility theory

Last updated

Credibility theory is a branch of actuarial mathematics concerned with determining risk premiums. [1] To achieve this, it uses mathematical models in an effort to forecast the (expected) number of insurance claims based on past observations. Technically speaking, the problem is to find the best linear approximation to the mean of the Bayesian predictive density, which is why credibility theory has many results in common with linear filtering as well as Bayesian statistics more broadly. [2]

Contents

For example, in group health insurance an insurer is interested in calculating the risk premium, , (i.e. the theoretical expected claims amount) for a particular employer in the coming year. The insurer will likely have an estimate of historical overall claims experience, , as well as a more specific estimate for the employer in question, . Assigning a credibility factor, , to the overall claims experience (and the reciprocal to employer experience) allows the insurer to get a more accurate estimate of the risk premium in the following manner:

The credibility factor is derived by calculating the maximum likelihood estimate which would minimise the error of estimate. Assuming the variance of and are known quantities taking on the values and respectively, it can be shown that should be equal to:

Therefore, the more uncertainty the estimate has, the lower is its credibility.

Types of Credibility

In Bayesian credibility, we separate each class (B) and assign them a probability (Probability of B). Then we find how likely our experience (A) is within each class (Probability of A given B). Next, we find how likely our experience was over all classes (Probability of A). Finally, we can find the probability of our class given our experience. So going back to each class, we weight each statistic with the probability of the particular class given the experience.

Bühlmann credibility works by looking at the Variance across the population. More specifically, it looks to see how much of the Total Variance is attributed to the Variance of the Expected Values of each class (Variance of the Hypothetical Mean), and how much is attributed to the Expected Variance over all classes (Expected Value of the Process Variance). Say we have a basketball team with a high number of points per game. Sometimes they get 128 and other times they get 130 but always one of the two. Compared to all basketball teams this is a relatively low variance, meaning that they will contribute very little to the Expected Value of the Process Variance. Also, their unusually high point totals greatly increases the variance of the population, meaning that if the league booted them out, they'd have a much more predictable point total for each team (lower variance). So, this team is definitely unique (they contribute greatly to the Variance of the Hypothetical Mean). So we can rate this team's experience with a fairly high credibility. They often/always score a lot (low Expected Value of Process Variance) and not many teams score as much as them (high Variance of Hypothetical Mean).

A simple example

Suppose there are two coins in a box. One has heads on both sides and the other is a normal coin with 50:50 likelihood of heads or tails. You need to place a wager on the outcome after one is randomly drawn and flipped.

The odds of heads is .5 * 1 + .5 * .5 = .75. This is because there is a .5 chance of selecting the heads-only coin with 100% chance of heads and .5 chance of the fair coin with 50% chance.

Now the same coin is reused and you are asked to bet on the outcome again.

If the first flip was tails, there is a 100% chance you are dealing with a fair coin, so the next flip has a 50% chance of heads and 50% chance of tails.

If the first flip was heads, we must calculate the conditional probability that the chosen coin was heads-only as well as the conditional probability that the coin was fair, after which we can calculate the conditional probability of heads on the next flip. The probability that it came from a heads-only coin given that the first flip was heads is the probability of selecting a heads-only coin times the probability of heads for that coin divided by the initial probability of heads on the first flip, or .5 * 1 / .75 = 2/3. The probability that it came from a fair coin given that the first flip was heads is the probability of selecting a fair coin times the probability of heads for that coin divided by the initial probability of heads on the first flip, or .5 * .5 / .75 = 1/3. Finally, the conditional probability of heads on the next flip given that the first flip was heads is the conditional probability of a heads-only coin times the probability of heads for a heads-only coin plus the conditional probability of a fair coin times the probability of heads for a fair coin, or 2/3 * 1 + 1/3 * .5 = 5/6 ≈ .8333.

Actuarial credibility

Actuarial credibility describes an approach used by actuaries to improve statistical estimates. Although the approach can be formulated in either a frequentist or Bayesian statistical setting, the latter is often preferred because of the ease of recognizing more than one source of randomness through both "sampling" and "prior" information. In a typical application, the actuary has an estimate X based on a small set of data, and an estimate M based on a larger but less relevant set of data. The credibility estimate is ZX + (1-Z)M, [3] where Z is a number between 0 and 1 (called the "credibility weight" or "credibility factor") calculated to balance the sampling error of X against the possible lack of relevance (and therefore modeling error) of M.

When an insurance company calculates the premium it will charge, it divides the policy holders into groups. For example, it might divide motorists by age, sex, and type of car; a young man driving a fast car being considered a high risk, and an old woman driving a small car being considered a low risk. The division is made balancing the two requirements that the risks in each group are sufficiently similar and the group sufficiently large that a meaningful statistical analysis of the claims experience can be done to calculate the premium. This compromise means that none of the groups contains only identical risks. The problem is then to devise a way of combining the experience of the group with the experience of the individual risk to calculate the premium better. Credibility theory provides a solution to this problem.

For actuaries, it is important to know credibility theory in order to calculate a premium for a group of insurance contracts. The goal is to set up an experience rating system to determine next year's premium, taking into account not only the individual experience with the group, but also the collective experience.

There are two extreme positions. One is to charge everyone the same premium estimated by the overall mean of the data. This makes sense only if the portfolio is homogeneous, which means that all risks cells have identical mean claims. However, if the portfolio is heterogeneous, it is not a good idea to charge a premium in this way (overcharging "good" people and undercharging "bad" risk people) since the "good" risks will take their business elsewhere, leaving the insurer with only "bad" risks. This is an example of adverse selection.

The other way around is to charge to group its own average claims, being as premium charged to the insured. These methods are used if the portfolio is heterogeneous, provided a fairly large claim experience. To compromise these two extreme positions, we take the weighted average of the two extremes:

has the following intuitive meaning: it expresses how "credible" (acceptability) the individual of cell is. If it is high, then use higher to attach a larger weight to charging the , and in this case, is called a credibility factor, and such a premium charged is called a credibility premium.

If the group were completely homogeneous then it would be reasonable to set , while if the group were completely heterogeneous then it would be reasonable to set . Using intermediate values is reasonable to the extent that both individual and group history is useful in inferring future individual behavior.

For example, an actuary has an accident and payroll historical data for a shoe factory suggesting a rate of 3.1 accidents per million dollars of payroll. She has industry statistics (based on all shoe factories) suggesting that the rate is 7.4 accidents per million. With a credibility, Z, of 30%, she would estimate the rate for the factory as 30%(3.1) + 70%(7.4) = 6.1 accidents per million.

Related Research Articles

The likelihood function is the joint probability of the observed data viewed as a function of the parameters of a statistical model.

In probability theory and statistics, Bayes' theorem, named after Thomas Bayes, describes the probability of an event, based on prior knowledge of conditions that might be related to the event. For example, if the risk of developing health problems is known to increase with age, Bayes' theorem allows the risk to an individual of a known age to be assessed more accurately by conditioning it relative to their age, rather than simply assuming that the individual is typical of the population as a whole.

Students <i>t</i>-distribution Probability distribution

In probability and statistics, Student's t-distribution is a continuous probability distribution that generalizes the standard normal distribution. Like the latter, it is symmetric around zero and bell-shaped.

In statistics, a statistic is sufficient with respect to a statistical model and its associated unknown parameter if "no other statistic that can be calculated from the same sample provides any additional information as to the value of the parameter". In particular, a statistic is sufficient for a family of probability distributions if the sample from which it is calculated gives no additional information than the statistic, as to which of those probability distributions is the sampling distribution.

<span class="mw-page-title-main">Law of large numbers</span> Averages of repeated trials converge to the expected value

In probability theory, the law of large numbers (LLN) is a theorem that describes the result of performing the same experiment a large number of times. According to the law, the average of the results obtained from a large number of trials should be close to the expected value and tends to become closer to the expected value as more trials are performed.

A Bayesian network is a probabilistic graphical model that represents a set of variables and their conditional dependencies via a directed acyclic graph (DAG). Bayesian networks are ideal for taking an event that occurred and predicting the likelihood that any one of several possible known causes was the contributing factor. For example, a Bayesian network could represent the probabilistic relationships between diseases and symptoms. Given symptoms, the network can be used to compute the probabilities of the presence of various diseases.

In statistics, the power of a binary hypothesis test is the probability that the test correctly rejects the null hypothesis when a specific alternative hypothesis is true. It is commonly denoted by , and represents the chances of a true positive detection conditional on the actual existence of an effect to detect. Statistical power ranges from 0 to 1, and as the power of a test increases, the probability of making a type II error by wrongly failing to reject the null hypothesis decreases.

<span class="mw-page-title-main">Confidence interval</span> Range to estimate an unknown parameter

In frequentist statistics, a confidence interval (CI) is a range of estimates for an unknown parameter. A confidence interval is computed at a designated confidence level; the 95% confidence level is most common, but other levels, such as 90% or 99%, are sometimes used. The confidence level represents the long-run proportion of CIs that theoretically contain the true value of the parameter. For example, out of all intervals computed at the 95% level, 95% of them should contain the parameter's true value.

In probability theory, the law of total variance or variance decomposition formula or conditional variance formulas or law of iterated variances also known as Eve's law, states that if and are random variables on the same probability space, and the variance of is finite, then

Bayesian statistics is a theory in the field of statistics based on the Bayesian interpretation of probability where probability expresses a degree of belief in an event. The degree of belief may be based on prior knowledge about the event, such as the results of previous experiments, or on personal beliefs about the event. This differs from a number of other interpretations of probability, such as the frequentist interpretation that views probability as the limit of the relative frequency of an event after many trials.

In statistical inference, specifically predictive inference, a prediction interval is an estimate of an interval in which a future observation will fall, with a certain probability, given what has already been observed. Prediction intervals are often used in regression analysis.

In null-hypothesis significance testing, the p-value is the probability of obtaining test results at least as extreme as the result actually observed, under the assumption that the null hypothesis is correct. A very small p-value means that such an extreme observed outcome would be very unlikely under the null hypothesis. Even though reporting p-values of statistical tests is common practice in academic publications of many quantitative fields, misinterpretation and misuse of p-values is widespread and has been a major topic in mathematics and metascience. In 2016, the American Statistician Association (ASA) made a formal statement that "p-values do not measure the probability that the studied hypothesis is true, or the probability that the data were produced by random chance alone" and that "a p-value, or statistical significance, does not measure the size of an effect or the importance of a result" or "evidence regarding a model or hypothesis." That said, a 2019 task force by ASA has issued a statement on statistical significance and replicability, concluding with: "p-values and significance tests, when properly applied and interpreted, increase the rigor of the conclusions drawn from data."

The expected utility hypothesis is a popular concept in economics that serves as a reference guide for decisions when the payoff is uncertain. The theory recommends which option rational individuals should choose in a complex situation, based on their risk appetite and preferences.

<span class="mw-page-title-main">Actuarial notation</span> Shorthand method to record math formulas that deal with interest rates and life tables

Actuarial notation is a shorthand method to allow actuaries to record mathematical formulas that deal with interest rates and life tables.

In statistics, the question of checking whether a coin is fair is one whose importance lies, firstly, in providing a simple problem on which to illustrate basic ideas of statistical inference and, secondly, in providing a simple problem that can be used to compare various competing methods of statistical inference, including decision theory. The practical problem of checking whether a coin is fair might be considered as easily solved by performing a sufficiently large number of trials, but statistics and probability theory can provide guidance on two types of question; specifically those of how many trials to undertake and of the accuracy of an estimate of the probability of turning up heads, derived from a given sample of trials.

This glossary of statistics and probability is a list of definitions of terms and concepts used in the mathematical sciences of statistics and probability, their sub-disciplines, and related fields. For additional related terms, see Glossary of mathematics and Glossary of experimental design.

The actuarial present value (APV) is the expected value of the present value of a contingent cash flow stream. Actuarial present values are typically calculated for the benefit-payment or series of payments associated with life insurance and life annuities. The probability of a future payment is based on assumptions about the person's future mortality which is typically estimated using a life table.

<span class="mw-page-title-main">Variance reduction</span>

In mathematics, more specifically in the theory of Monte Carlo methods, variance reduction is a procedure used to increase the precision of the estimates obtained for a given simulation or computational effort. Every output random variable from the simulation is associated with a variance which limits the precision of the simulation results. In order to make a simulation statistically efficient, i.e., to obtain a greater precision and smaller confidence intervals for the output random variable of interest, variance reduction techniques can be used. The main ones are common random numbers, antithetic variates, control variates, importance sampling, stratified sampling, moment matching, conditional Monte Carlo and quasi random variables. For simulation with black-box models subset simulation and line sampling can also be used. Under these headings are a variety of specialized techniques; for example, particle transport simulations make extensive use of "weight windows" and "splitting/Russian roulette" techniques, which are a form of importance sampling.

Bootstrapping is any test or metric that uses random sampling with replacement, and falls under the broader class of resampling methods. Bootstrapping assigns measures of accuracy to sample estimates. This technique allows estimation of the sampling distribution of almost any statistic using random sampling methods.

In statistics, the bias of an estimator is the difference between this estimator's expected value and the true value of the parameter being estimated. An estimator or decision rule with zero bias is called unbiased. In statistics, "bias" is an objective property of an estimator. Bias is a distinct concept from consistency: consistent estimators converge in probability to the true value of the parameter, but may be biased or unbiased; see bias versus consistency for more.

References

  1. Bühlmann, Hans; Gisler, Alois (2005). A Course in Credibility Theory and its Applications. Berlin: Springer. ISBN   978-3-540-25753-0.
  2. Makov, Udi (2013). "Actuarial credibility theory and Bayesian statistics—the story of a special evolution". In Damien, Paul; Dellaportas, Petros; Polson, Nicholas G.; Stephens, David A. (eds.). Bayesian Theory and Applications. pp. 546–554. doi:10.1093/acprof:oso/9780199695607.003.0027.
  3. "A brief introduction to credibility theory and an example featuring race-based insurance premiums".

Further reading